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Welcome to lecture number 56. So, let me continue with the computation that I had started 

last time, this was with a view towards proving the associative property of, associativity of 

wedge product as well as the anti-commutativity. 

(Refer Slide Time: 1:00) 

 
 



 
 

 
 

 



So now what we so, the main lemma as it turns out for proving that is this following a simple 

looking thing, namely this forms epsilon I that I defined last time. I have this property epsilon 

I by epsilon J epsilon I J, where I J is the concatenation of the two multi-indices I and J. So, 

we wanted to check this and in the process, we just had to as usual these are, these being 

alternating forms it is enough to check on basis vectors, their actions on basis vectors and we 

had two cases. 

So we started with this a, this is, since this is both sides are k plus l forms, we started with 

basis vectors e p 1 all the way up to e p plus p k plus l. Of course, here it is we already know 

that the degree of the form is more than the dimension then an alternating form has to vanish. 

So, we might implicitly we are assuming that k plus l less than or equal to n; otherwise there 

is nothing to prove. 

So, we started with k plus l basis vectors; e p1 e p k plus l and we assume they are ordered in 

the usual way and this concatenation, well, so we have two cases. The first case, P contains 

an entry not in I or J. In this case, it turns out both sides are 0, the second case is looks rather 

special where I am assumed that P contains the entries in this index set P, together they make 

up is exactly equal to I J so, in this specific order p1 up to p k plus l is this. 
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Now, here actually if I want to be consistent I have to be, I cannot insist on this strictly 

increasing ordering because that does not fit into this concatenation as we observed earlier. 

So, let me drop this condition that this, in fact I did not use that anywhere. So case one, but if 

I drop that condition then I have to be, I have to add one more case which is that case, let me 

call it case 0, this being the case that P equals P 1…. P k plus l has a repeated index. 

So, when there is a repeated index, the right hand side is trivially 0, well because of the 

definition and similarly, the left hand side actually, it is you do not even need that definition, 

specific nature of epsilon just the fact that they are alternating forms will ensure that if two 

indices are repeated, you will have two vectors being the same in the input. So, therefore both 

sides will be 0. So, this case is kind of clear, case 1 and then case 2. 
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So, case 2, I have this. Now there is no conflict when I write P equals I J, it might very well 

happen that this is, these indices are not in increasing order but the point is that here I should 

say P equals I J and no index is repeated. So, in other words, what I mean is all the entries of 

P are distinct, another way of saying that is the entries of I and the entries of J there is no 

common entry in between these two. 

So and then once just evaluates both sides so, epsilon i j k so, in this case when I evaluate it 

on P, I get 1 by definition of epsilon I J. Now, the left hand side is we have to go to the 

definition of the wedge product and then you expand it out like this. This was where we had 

stopped last time. Well, let us look at these terms in the sum, the only way a term can be 

nonzero is that the permutation sigma will have to, this be a permutation which takes the 

indices 1 up to k back to the same set 1 to k; otherwise if sigma takes one of these indices 

here, if sigma takes any of these indices to something other than 1 to k, something in other 

words more than k, then epsilon of i acting on that will be 0 for the simple reason that if you 

see this P 1 is i 1, P k is i k. 

So, we know that epsilon i acting on certain basis vectors will be nonzero if and only if the 

basis vectors involved in the inputs are permutation, are just e i 1, e i 2, e i k in some written 

possibly different orders but essentially the index set has to be from this set I 1 up to i k. In 

terms of P, the index set has to be from P 1 up to P k. 

So, essentially the sigma 1, sigma k has to be 1 permutation of 1 to k and likewise, sigma 

should take the index set k plus 1 etcetera back to k plus l. So, a term in the sum is nonzero 

only if the sigma of 1 etcetera sigma k, this set should be the same as 1 to k and sigma k plus 

1, sigma k plus l should be the same as k plus 1, k plus l as set. 
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Therefore, what we can do is therefore, we can write sigma equals tau times eta, where tau is, 

belongs to S k permutation on only k letters and eta belongs to permutation only on l letters. 

So, it is quite clear what tau and sigma have to be, I mean it is essentially so, for instance tau 

is the permutation defined by 1, tau 1 equal to sigma 1, tau k equal to sigma k and tau k plus 

1 onwards nothing happens, k plus 1, tau k plus l equal to k plus l. 

Similarly, eta 1 equal to 1 etcetera so, eta does not do anything to the first k and then 

permutes all this and this even though both tau and sigma actually the way I have written it 

they act on k plus l, both of them act on k plus k symbols since, they are not doing anything, 

the tau is not doing anything to the last l letters, tau can be regarded as an element of S k and 

eta can be regarded as an element of S l. 

Now, and in fact once we have this, of course we know that signature is multiplicative, also 

we have (signat), the sign, sorry, not signature, the sign of the permutation as behaves well 

under multiplication, composition of permutations. So, I have this. 
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And another small change I make is the way I have written it, eta instead of notice that this 

for k plus 1 onwards I can think of instead of eta acting on k plus 1, k plus l, I can just think 

of eta as a permutation of, regard eta as a permutation of 1 to l in which case this for instance 

what I have here, what I was trying to write here, this stuff will become like essentially sigma 

of k plus 1 will be k plus eta of 1 sigma of k plus l will be sigma of l. The point being that 

anything in between k and k plus l will be of the form k plus something, what is changing is 

that something so, I might as well regard eta as a permutation of the various things that you 

add to k which is what I have written here. 



(Refer Slide Time: 14:14) 

 
 

 
 

 



The advantage of doing that is now what we can write this is the quantity we are interested in: 

e p 1, e p k plus l, is I still have that 1 over k factorial l factorial. Now, I have tau in S k, eta in 

S l, the original sum was over S k plus l. But we saw that the original sum contains lots of 0 

elements, any permutation which does not, which is not have this property will give rise to a 

0 term. So, we just have to worry about those permutations, those elements of S k plus l for 

which this holds and once we restrict to those permutations in the sum, I can write it like 

what I am doing now. 

So, tau in S k eta in S l and then I use the multiplicative nature of sine that e tau 1, e tau k and 

then times epsilon J then I use this as well e, oops, I forgot about the P, P tau 1, P tau k and 

here I will have e p k plus eta 1, e p k plus eta l. And so I can split it into, the point is that I 

can write it as a product, k on our k factorials summation over tau and S k sine tau, then I just 

keep the epsilon I e p tau 1 e p tau k, this is one term. 
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And other one is 1 over l factorial eta in S l sine eta epsilon J, e p k plus tau 1 etcetera, not 

tau, it is now eta, e p k plus eta of l and one whole and a big bracket around this and this thing 

that I have the first term, is by definition alt epsilon I acting on well, e 1 rather e p 1, e p 1…e 

p k. And then the second term similarly is alt epsilon J acting on e p plus, p k plus 1, e p k 

plus l, which is just I mean since, epsilon I is already alternating, alt does not do anything to 

it, this is one and likewise, the second term is also 1 the way because of the fact that P 

assumption that P is a concatenation of these two index sets. Both these terms will give me 1 

and therefore one is done. 
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Now, the last case, so the third and last case is P is a permutation of I J and has no repeated 

indices or entries. So, I mean this third possibility exhausts all the things that can happen so, 

we just and how do we deal with this case? Well, in this case we can apply a permutation of P 

which gets us back to case 3, case 2. 

So, if P is a permutation of I J, in other words so, P in our notation I am assuming that P is I J 

sigma so, in that case what we can just apply sigma inverse for example, P sigma inverse is I 

J and then sigma multiplied by sigma inverse which would be 1. So, P sigma inverse would 

be I J so, then what one would do is one would start with this as in the proof of case 2, except 

that you will start with P sigma inverse and then you verify the formula. 

But then you notice that P sigma inverse if you have it, if you have both sides equal, the final 

point of, final object of interest is this equation, if both sides evaluated on P sigma inverse are 

the same then both sides evaluated on P itself will be the same because you can go back to 

this just by moving things around. In other words, applying the reverse permutation, one can 

we can apply permutation of P which gets us back to case 2. 

The effect of the permutation will be to multiply both sides by the same sign. So, this is 

essentially reduces to case 3, case 2 so, that completes the proof of this. Now, I should 

remark, perhaps I should have remarked on this earlier but this proof, this exposition I am 

more or less following exactly as it is presented in John Lee's text, Introduction to Smooth 

Manifolds. 
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So, I should say a reference, John Lee, Introduction to Smooth Manifolds. So now, so once 

we have this lemma then we can move on to the main object of the theorem of main interest 

for us so, we wanted to prove associativity. So, I have omega A k V, eta n Al V and let us say 

alpha in A r V. So, one wanted to check that this is equal to this. 

Now, what we can do is with all that we have discussed so far, we can, we know that we have 

a nice basis for this A k V, Al V and A r V as fix a basis omega 1, omega n of V star the dual 

space, then we have basis for A k V etcetera given by epsilon I dot dot. So, the length of the 

index dictated by what this the degree of the form one is considering, but we are using the 

same notation epsilon, the I index set will keep track of the degrees. 
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Well, once we have basis for all the spaces since, the wedge product is itself multi-linear i. e., 

so, we have, this was the first property that I wrote down, the bi-linearity of the wedge 

product but here actually we have three forms but it does not, it is the same thing carries over. 

And one can conclude that since the wedge product is multi-linear so, let us call this equation 

as star, it is enough to verify star for the basis forms. 

So, what one does is you expand omega in terms of epsilon I, eta in terms of the epsilon J and 

alpha in terms of the epsilon K, where I, J, K are multi indices, expand them, in other words 

write them as linear combinations then use the multi-linearity of this wedge product and you 

will end up with a whole bunch of terms and individual terms in the sum will be of the form, 

of this form on the left side, on the right side they will involve terms of the form. 

So, these terms will occur in the left side and the right side with the same coefficients but we 

want to know if this form is actually equal to this, i. e enough to show this. But this thing here 

on the left side is we have seen that this is same as I J wedge E k which is the same as epsilon 

I J K and this is also the similarly right side as epsilon I wedge E J K which is equal to 

epsilon I J K. 

So, both sides are the same, therefore these star holds. So, it is a pretty straightforward 

consequence of this. Now, the other thing is anti-commutativity. Here, I should remark that it 

is, first let me write down the formula. So, one is interested in showing that omega wedge eta 

as minus 1 raise to K l eta wedge omega, here I should remark that when we are dealing with 

tensor products, associativity is extremely straightforward, there is nothing, I am it is almost 

like it is a triviality from the definition. Here it is not so obvious because the alt map is 

involved, which involves a sum and so on. 

On the other hand, when one is dealing with tensor products, omega tensor eta has absolutely 

no connection with eta tensor omega, the two are not related at all so, no such equation holds. 

Here interestingly, there is an equation relating omega with eta and eta wedge omega, they 

justify by sign in fact. So, again, we can use our basis to write omega in terms of the epsilon 

I, eta in terms of the epsilon J and enough to show by the same logic we will end up with 

same coefficients, epsilon I wedge, epsilon J equals minus 1 over K l. 

So, I will just write this and then stop. So, I have to show this. So, I will stop at this point, 

next time I will complete the small calculation, bulk of the work has been done. So I just, I 

finished this and then that will complete our discussion of multi-linear algebra tensors and 



forms, alternating forms on vector spaces. Then we will carry all these constructions to 

manifolds. Thank you. 


