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Inverse Function Theorem 

Now let us start our discussion leading up to the inverse function theorem. 
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But before that, before stating the inverse function theorem, I would like to briefly discuss 

another thing, which is an analog of what one sees in one variable calculus, namely the chain 

rule. So, here I have two functions, Rn to Rm and let us say Rk, so this is f, this is g. So the 

hypothesis is that here I have taken the domain to be full Euclidean space, but it is only and it 

is enough to have open sets. So I can start with an open set in Rn and an open set in Rm. And 

then everything makes perfect sense.  

Just for simplicity, I took everything to be, the domains to be all of Euclidean space. So chain 

rule is that if f is differentiable at P in Rn and g is differentiable at Q equals f of p, this is in 

Rm, then the composition h equals g composed with f is differentiable at P and the derivative 

of h at P, which is a linear map from, h goes from Rn to R k, so the derivative is also linear 

map from Rn to Rk.  

And this linear map is a composition of two linear maps one is d g evaluated at the point f of 

P composed with d f at P. This is the analog of chain rule in higher dimensions. So, it is just a 

composition of what we, essentially what it says is if you have a composition of differentiable 



functions, then the derivative is a composition of the two separate derivatives of the functions 

and here composition as linear maps. So, in particular if one wants to look up, look at the 

matrix Jacobean matrix of this linear map d h. Then I would look at the Jacobean matrix of 

this and matrix multiplied by the Jacobean matrix of df.  
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Now the inverse function theorem. So basically this says that if you have a function from Rn 

to Rn, so here it is crucial that the both the domain and target spaces are the same dimension. 

And if you have a function, differentiable function from Rn to Rn, and if the derivative is 

invertible as a linear map, then the function is locally one-to -one. So well, it says a bit, quite 

a bit more than that. But let us, let me just go back to the trivial case.  

The trivial case is the one dimensional case. So here I have a smooth differentiable function 

from an open interval to R and the assumptions are as follows. Assume that f prime exists and 

is continuous on a, b. So, not only do we assume that the derivative exists, but we also 

assume the derivative is continuous on a, b. Then the claim is suppose, the derivative f prime 

p is not equal to 0 for some P in a, b, then we can find open intervals I1 and I2 containing P 

and f of P respectively. So, that f, this I1 is actually, I should remark here, this I1 is actually 

contained in a, b.  

So, we can find, so that f is defined on I1. So if maps I1 to I2 bijectively i.e. f is one to one 

and onto. So I instead of saying one to one or onto, I will use the words injective and 

surjective. And if both of them hold, I would say bijective. So this is one to one is 



synonymous with injective and this is called surjective. And if both conditions hold, it is 

called bijective.  
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So what we are saying is that f maps this one interval bijectively onto the other interval. And 

f inverse, the moment I know it is bijective, I have the inverse map from I2 to I1, is also 

continuously differentiable. So, the derivative of f inverse exists and is continuous. So, this is 

the one variable statement of the inverse function theorem. What we are saying is, if the 

derivative is not 0 at a point, then we can, if we stay close enough to that point, we can find 

an interval around that point and interval around the image point, so that f maps the smaller 

interval onto the, onto I2.  

And f is actually one-to-one there, so, we get an inverse function for f. And this inverse is 

also differential. So, that is the, so the existence of the inverse function. And but it is only 

locally, this is I1 is maybe a just a very small sub interval of this bigger interval a, b. So we 

cannot say anything about what happens to f on the whole interval a, b. It is only close to P 

that we can say something.  

Now, what would be Yeah, so the proof in this case I will just briefly mention what the proof 

is? It is extremely simple and unfortunately, it does not shed any light on how to prove the 

higher dimensional version. But let us see how the proof would go. The thing is, if you have, 

since f prime p is not equal to 0, either f prime p is strictly positive or f prime p is strictly 

negative. So, assume the first, the proof is similar in the second case. 



Assume f prime p is positive. Now, the thing is that we have assumed that the derivative 

function is continuous. So if this is if prime is positive at some point p, it is going to be 

positive in a neighbourhood of P. Since, f prime is assumed to be continuous, there exists 

delta greater than 0, so that f prime x is positive for all x in p - delta p + delta. This, that the 

fact that f prime is positive on this interval means that f is strictly increasing on this. In 

particular, well sorry f is strictly increasing, in particular f is strictly increasing on p - delta, p 

+ delta.  

So, this is going to be our I1, so that I1 which I asserted in this theorem is this interval on 

which f prime interval containing p on which f prime is positive throughout. So it is strictly 

increasing therefore, it is one to one and hence f is injective  on I1. Now, if you look at the 

image of f, image of f follows from, so also the fact that it is strictly increasing and 

Intermediate Value Theorem. The Intermediate Value Theorem.  

Intermediate Value Theorem implies that f of I1, the Intermediate Value Theorem for 

continuous functions implies that if I start with an interval and look at the image of that 

interval under a continuous function, it is again going to be an interval. It does not, it will not 

say that if I start with an open interval, the image will be an open interval, but it does say that 

it is an interval. Implies that this is an interval. 
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Again strict monotonicity, strict monotonicity of f on I1 implies that this interval is open. So, 

that completes the proof. Well not quite, I mean the differentiability of f inverse, 

differentiability of f inverse follows in the usual way. So in the usual way meaning, we 



learned in one variable calculus that if you have a function which has an inverse and the 

derivative of the function is not 0, then one can, the inverse is also the differentiable. And in 

fact, the derivative of the inverse is given by the inverse of the derivative. So that is, that is 

what I mean by the usual way.  
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So now let us turn our attention to higher dimensions, for n greater than or equal to 2. We 

have the inverse function theorem which states, so let U contained in Rn be an open set and f 

from U to Rn, be a C1 map. By map or let me just say function since that is what I have been 

saying all along, C1 function. So i.e. all partial derivatives of the components of f exist and 

are continuous, this is the meaning of C1. All partial derivatives of the components of f exist 

and are continuous.  



(Refer Slide Time: 17:02) 

  

Now suppose that, this is the main assumption d fp which is a map from Rn to Rn, is 

invertible, which is the same thing as saying, i.e. bijective, suppose the d fp is invertible i.e. 

bijective for some p in U. So here is a sort of schematic picture. So this is my open set U, I 

have f and this is Rn and have some point P inside this, this is getting mapped to f of p. 

Circulate at only this and this is f and I am assuming that the derivative of f at this point is an 

invertible linear transformation from Rn to Rn.  

If this happens, then there are open sets U1 contained in U, U2 is something, some open 

certain Rn containing P and f of p respectively.  
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Such that f from U1 to U2 is a bijective map and f inverse from U2 to U1 is also C1. So this 

U1 is going to be some smaller set here U2 is some open set containing f of p. When I restrict 

f to U1 when I get a bijective, the conclusion is that when I restrict f to u1 I get a bijective 

map on to u2 and moreover the inverse is also a differentiable, continuously differentiable 

function. So I stated it so that it is exactly this, it looks exactly the same as the one variable 

statement.  
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Here in the one variable case, the derivative as a linear transformation is just a number. So it 

is one by one matrix, one can think of prime p as a one by one matrix and to say it is 

invertible is just saying that it is not 0. And what simplifies things in the one variable case 

dramatically is that we have this nice condition, that the moment the derivative is not 0, we 

know it is either strictly increasing or strictly decreasing. While here there is one has to give a 

completely different argument. Let us, this has lots of interesting conclusions or corollaries.  
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So let me begin with one corollary. Again, I am start with an open set in Rn, let f from u 

contained in Rn an open set. Suppose in the previous theorem, I just made the assumption 

about the invertibility of the derivative only at a single point. But now let us assume that, 

suppose that d fp is invertible at all P in U. So, then the conclusion is, then the image of this 

open set U is a subset of Rn is an open set in Rn, this is the conclusion.  

And this follows immediately from the previous thing because so let me quickly outline that. 

Well so let us start with, let us see what how to describe this f of U. So I start with first any 

point in U, for any p in U, the inverse function theorem applies because we assume that the 

derivative is invertible at all points in the domain. So, start with any point in the domain and I 

can apply the inverse function theorem. Applies and we get open sets, let us call it Vp and W 

f of p. Well, Vp and so in fact, let me just, let me deal with just one open set, anyway the 

other one is going to be image of one of them, so there is no need to mention 2.  

And we get an open set Vp which contains P and which is contained in U such that this f of 

Vp is open in Rn. This is what I called U2 in the previous theorem. U2 is since this map is 

bijective from here to here, U2 will be just f of U1, so that f of p is open. Okay fine.  
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So now, the thing is that every point is contained in some such Vp. So, if I look at this open 

set for every P there is a Vp and that Vp itself is contained in U. So, therefore, I can write U 

as the union over all P in U of these Vps, okay just take the union of all these Vps, I do not 

get anything more than U and everything in P is of course contained in one of these, so, I get 

this. 

if I write it like this, then f of U will be just union over P in U f of Vp. F of Vp, I just 

remarked that f of p is open in Rn. So, I have a arbitrary union of sets, each of which is open 

in Rn. Therefore, we know this, the union itself is open. So, this thing is open in Rn, therefore 

f of U is open in Rn, which was the conclusion that we wanted. So, this is one of the 

consequences of the inverse function theorem. Now. In my next lecture, I will expand on 

another important consequence. So we will stop here. 

 


