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vector fields on Manifolds 

Hello and welcome to the continuing series of lectures on vector fields on manifolds. Last time I 

sort of outlined brief sketch of why it is a vector field on a compact manifold is complete. Now, 

this outline I gave is more for an intuitive understanding of why one would expect this. The 

actual proof is somewhat. This can be made into a precise proof, but there are more, the better 

ways of stating this, in fact, there is a common proof for this result and the next results that I am 

going to state. 
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Another class, another situation where you get complete vector fields. So, the proposition is, is 

that the proposition is that any left-in variant vector field, vector field X on a lie group is 

complete lie group G. So here we do not assume the G is compact G can be non compact. And, 

but the assumption is the, the vector field is not an arbitrary vector field but f left-in variant 

vector field. 

And outline of proof as I was saying the, it is possible to give a proof which will deal with this 

lie group case and the compact manifold case more or less simultaneously. The essential 

ingredient turns out to be the fact that both on a compact manifold and on a lie group we can 



ensure that any if I take care vector field X in the lie group case it has to be left-in variant. Any 

integral curve started integral curve starting at any point is at least defined on a common interval 

minus epsilon, epsilon. 

In other words, it is enough to show that there exists epsilon greater than 0 such that for all P in 

M. The integral curve starting at P is defined on minus epsilon, epsilon. In other words, the same 

epsilon should work for all the points in the manifold. So, integrals is defined on this. So, the 

maximal interval of definition can be something larger. In fact, what we are trying to prove is 

that the maximal interval is the full real line. 

But what we demand is that, at least it should be defined on minus epsilon, epsilon and the same 

epsilon should work for all points in the manifold. Now, it turns out that this condition is 

satisfied for both left-in variant vector fields on a lie group as well as arbitrary vector fields on a 

compact manifold. 

So, for arbitrary vector fields on a compact manifold, one can just cover the manifold after all the 

ODE Existence and Uniqueness theorem tells us that if you are close enough to a given point, 

then this, the one can choose an epsilon like in this, what I have written here. Locally, one can 

always choose this epsilon, and that is part of the theorem, part of Picard's Theorem and its 

refinements. 

So, you cover the manifold by these open sets on which one has a uniform epsilon, then you get 

a finite sub-cover and take the minimum of those epsilons and that will do the job. So that is for 

a compact manifold, but for a lie group, one proceeds as follows and actually if given this what if 

sigma is an integral curve, is an integral curve with maximal interval a, b with b less than 

infinity. 

So this should lead to a contradiction. So, let so we do the same thing as we did here in the 

previous proof except that I do not have to worry about defining the sigma b looking at the limit 

of sigma tn as tn goes to b. I do not quite do that rather what I do is slightly different. So, here I 

will say let is an integral curve with maximal, we proceed as follows. Well, let us look at the 

sigma. 



Now, the thing is that I know that by assumption, I have assumed that this epsilon exists at all 

points, we can do this and so on. Now, let us just take b minus let us look at in this real line. So 

after all, this is a and this is b, sigma is mapping it to the manifold. So what I do is I look at this 

point, this point is b minus epsilon by 2 on the real line now, the corresponding point is sigma of 

b minus epsilon by 2. 

This is what I will call might q. So unlike the previous sketch where, where I said we go all the 

way up to b, I just stopped slightly earlier at this b minus epsilon by 2 and call that q. Now, I am 

going to continue the find a new solution with starts at q, and then patch up these two just like I 

did in the last proof. So the rest is this same thing, but this simplifies this having this common 

epsilon will help us. 
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So, given this, we proceed as follows. So now, let gamma be the, so gamma I know is already 

defined that at least on the whole point is that the same epsilon will work. So, gamma is defined 

on minus epsilon, epsilon to M be the integral curve starting at q. So, I will draw a gamma. So, I 

will use a different color it starts at q. So that means it goes all the way here, but it will go 

slightly past wherever sigma was sort of ending. 

So define alpha. So now I would like to patch up these two define alpha from a to b plus epsilon 

by 2 to M by alpha of t equals a to b rather alpha t equal to sigma of t from sigma of t, if t is in 

between a and b and equals gamma of t minus. Now, when, essentially when, so I want to start at 



so where was I? So, I want to start I want to start at b sigma of b minus epsilon by 2. So this I 

will make t plus b minus epsilon by 2. 

If t is in between b minus epsilon and b plus epsilon by 2. So, this, so this is been, so I want to 

start here. So if I go rather no, not quite this, so this goes all the way up to minus 3 epsilon by 2, 

b minus 3 by 2 epsilon. And then when I add epsilon this part is okay, yeah, it is fine. So, t plus 

this. So, note that I had to change the sign a bit here. So this should be negative and this should 

be minus, this should be plus rather than the other way around.  

So, I changed it a bit. So with this in hand, now notice that around the relevant points on the real 

line here, b is here, b plus epsilon by 2, b minus epsilon by 2, and b minus 3 epsilon by 2. Well, 

the, this thing here, this alpha, this gamma is defined the all the way starting from b minus 3 

epsilon by 2, while sigma is defined all the way up to b. So, the common region of intersection is 

this note that alpha rather sigma, sigma equals sigma t equals gamma of t minus this on the 

common region, common open interval of intersection. 

And that is all the way from on t belonging to b minus 3 epsilon by 2 all the way up to b, and the 

reason that they agree here, since they are both integral curves and they agree at t equals b minus 

epsilon by 2. I mean, a t equals b minus t equals b minus epsilon by 2 the left hand side a sigma b 

minus epsilon by 2, and the right hand side is gamma 0. But the way we chose gamma, gamma 

of 0 is I mean, starting at q, and the q was this point sigma of b minus epsilon by 2.  

So the way we set up things they automatically agree. And by uniqueness as usual on the 

common interval, we have two solutions. So they agree on the common interval. Well, the, but 

they agree on the common interval, but the advantage of gamma is while sigma was defined only 

up till b, gamma is defined all the way up to b plus epsilon by 2. So therefore, that enables us to 

extend the solution. 
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So the fact that they agree on the common intersection, therefore, alpha is smooth and an integral 

curve, you can directly differentiate alpha and it is basically sort of combination of two integral 

curves and it is smooth. So this is an integral curve and then one is done. The point is that alpha 

0 as in the previous case is sigma of 0 equals P. But alpha is defined on a larger interval 

contradicting the, this is a contradiction. 

So, this is the main idea actually if, if one wants to, if one wants to prove this lie group case and 

the compact manifold case, the main idea is to get a single epsilon which will work for all points. 

Now, I briefly mentioned how one can do it in the compact manifold case, now let us see how to 

do it in the for a left-in variant vector field. 
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So, let X be left-in variant. And what I want is, let us, let us just look at let sigma from minus 

epsilon, epsilon to G be an integral curve with sigma 0 at equals e, the identity element. So, as 

we have seen, everything in a lie group sort of boils down to at least one, if one is considering 

left-in variants objects, everything boils down to considering what happens at the identity.  

Here too, if I get hold of an integral curve starting at identity, I can use this to get define integral 

curves at all other points for this vector field X. So, the main claim here is that and that will do 

the job because at the same epsilon will hold. So, claim Lg, the left translation. So here let us see, 

if g belongs to g then Lg composed with sigma again from minus epsilon to epsilon to g is an 

integral curve starting at g. 

What we have to write? So let gamma t is equal to Lg compose with sigma t. This is by 

definition the same thing as g times multiplied by sigma t, g sigma t. Now, the starting at g is 

trivial, gamma 0 equals g sigma 0 and sigma starts at identity. So this starts at g. The thing to 

check here is that this is actually an integral curve. 
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So, in other words gamma prime t, so let us say that it is an integral curve. So, now gamma prime 

t is equal to, I use chain rule dLg at sigma t acting and then acting on sigma prime t and sigma 

prime t is since sigma is a integral curve. This is X at sigma t. Now, the if we recall the definition 

of a left-in variant vector field was that X is left-in variant is equal the way we defined it, d Lg of 

Xe equal to X Xg, dLg of course, evaluated at identity, this at identity, Xe equal to, but we saw 

that this is also equivalent, instead of doing everything at identity suppose I start at some point p. 

So, Xp dLg at the point P Xp equal to X at gp. So, let us use this form here. This one here, and 

this will tell us that this is the same thing as X at g times sigma t, which is the same thing as X at 

gamma t. So therefore, gamma is an integral curve. Now, so if one has an integral curve starting 

at identity, it is very easy to and if the vector field is left-in variant, it is very easy to get all of the 

integral curves. 

All one has to do is just multiply this one, one starting at identity with g and you will get the 

digital curve starting at g. Now, here notice that because this new curve is also defined on minus 

epsilon, epsilon. So therefore, one has a common epsilon for all points in the lie group. And one 

can use this argument of patching up curves to show that the vector field is. Yeah, actually we 

already proved that we just the moment you get a common epsilon, you are done. So, and that 

concludes the statement that every left-in variant vector field is complete. 
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So, I want to say a few words about Smooth maps and vector fields. I have already remarked that 

if, if you have too smooth manifolds and a smooth map f. If I have a vector field on X, it may 

there is no natural way of defining a vector field on N using the derivative of f. So unlike the 

case of a tangent, if I have a single tangent vector, I got a corresponding tangent vector here. But 

that is not the case for a vector field.  

So but there is a notion of when the smooth map can be brought into play, but for that we already 

have to start with two vector fields on M and N. We cannot use something in that domain to push 

it to the range or vice versa. So here the definition is, so let us start with two vector fields. One 



on M and the other one on N. X and Y are f related if well, you, we just use the derivative of f at 

a point p. 

At that p I have Xp the vector field at that point, then well the derivative will take Xp to a 

tangent vector on N based at f of p, but at f of p I have, I can use Y so this is what we want. It is 

a very natural condition, it is just that wherever I land in the target, the value of the vector field 

should be by, so this, I am not assuming anything about f other than that it is smooth. For 

instance, f did not be one to one, in which case several points p in the domain can go to the same 

f of p. 

The part of this definition is that df of all those Xps will actually be the same in the target. That 

is inbuilt into this definition. So let us look at some examples. Let us start with the 

diffeomorphism, if f from M to N is at diffeomorphism then for any X in a vector field on the 

domain, there is a vector field on the target which is f related to X. So, this is a special case in 

which one of the few cases were just given the domain vector field I can actually find a target 

vector field which is f related to this. 

So, and we have seen this before. So, we have to define a vector field on N using this X and f so 

let us do it like this Y at q defined to be just use the derivative of f to come back to M, no not 

quite. So, you look at the corresponding point corresponding to q on M, which is f inverse p, f 

inverse q, look at the vector field X at that point use the derivative to go back to df at f inverse q 

and then X at f inverse q. And we already seen that this construction gives rise to a Smooth 

vector field on and so, but this is a very special case. 
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And the here is an example which is not, which is not related to a diffeomorphism. So, let i be 

the inclusion map of a sub-manifold be the inclusion map of a sub-manifold S in M. So, I want to 

start with the vector field on the big manifold and ask when is it f related to something in S? And 

conversely and so on. Conversely, I can start with a vector field on the sub-manifold and ask 

when it is i related, actually f here is i. So, I will talk a talk about this in the next lecture. So we 

will stop here. Thanks 


