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Lecture – 47 

Elementary Divisor Theorem 

 

So, first with this introduction, I want to state a theorem which is known as elementary 

divisor theorem and you will know also why is it called elementary divisor theorem. This 

is elementary divisor theorem. 

(Refer Slide Time: 00:29) 

 

So, we have a matrix A, M m n; m cross n matrix with integer entries of rank r, this 

means rank has a q matrices; a as a q matrix it has a rank r and as usual in earlier theorem 

I will use similar notation k is the minimum, min m comma n then there exist elementary 

matrices B 1 to B p with integer entries Z and also C 1 to C q with integer entries square 

matrices elementary is always square matrices such that when I multiply the given matrix 

a on the left by B 1 to B p; that means, I am making a row operations on a according to 

these elementary matrices and if I multiply by from the right by C 1 to C q, this makes 

sense; these multiplication makes sense because I have taken correct order. So, that; that 

means, making a row column operations on a and then there is (Refer Time: 02:44) 

matrix I give it to the diagonal matrix D which has the diagonal entries e 1 to e k. 



Which is an integer entries M n Z this is (Refer Time: 03:09) matrix is M n m m cross n 

because correct orders n. So, this e 1 to e k are integers with you can say even more with 

each e i divides a next 1 e r plus 1 for all i from 1 to r minus 1 and the remaining guys 

are 0 e r plus 1 e k r 0 because the ranks are equal now. So, the rank will not change if I 

multiply it by elementary matrices on the left or right because elementary matrices are 

actually having determinant 1. So, they are actually invertible matrices are integers. So, 

these e’s are called elementary and then I will explain this after we prove this theorem. 

So, this is what we want to do so; that means, again what are we looking for we are 

looking for elementary column and row and column operation are given matrix a to 

make it a diagonal matrix and now you see we are not allow to cancel we are not allowed 

to invert make a use of the fact that dividing by integers that is not allowed because we 

want to remain within integers all right. So, what is the procedure? Let us start. 

(Refer Slide Time: 04:59) 

 

So, I will first. So, proof is very easy if you do it with a systematic care. So, the first 

thing I will make some assumption on the entries. So, suppose that all entries. So, given 

matrix A is a i j; a i j where integers suppose that all entries a i j are divisible by the top 

entry a 11, we are making under this assumption now and later on we will relive this 

assumption. 

So; that means, what let me draw day a picture here of a matrix. So, a 11 is here and this 

guys divides all the entries then from I want to kill this. So, that is very easy now 



because this guy divisible by this. So, this entry is a 21. So, this one it divisible by this, 

so I am going multiply this column this row by a 21 divided by a 11 by this minus of that 

and add it to the next row. So, that way I will make this entry to be 0 and similarly all 

these entries; I will make it 0 and this assumption is very very important because this is; I 

get only integers if that does not divide then I cannot use this operation because then in 

that case I will not remain in integer matrices, I will go out of that. So, this and similarly 

I will make a column operation. So, that these guys are 0 and therefore, we will get 

matrix here a prime, a primes order is reduced, 1 row is reduced, 1 column is reduced 

and also note that in all entries what will happen to the entries of a prime they will be the 

combination of the entries of these and this guys. So, they will again be. So, a further 

note that all entries in a prime I have also the same property are divisible by a 11. 

And therefore, I will apply induction and apply induction to finish the proof what proof 

that by row and columns operation we can make a given matrix over integers into a 

diagonal matrix and then we will worry about those conditions on the diagonal entries of 

a see we still have some condition to check the diagonal entries we have these properties. 

Now, therefore, we are in next case that is the case where this is not true; that means, 

there is some entry in a matrix who is not divisible by a 11. So, this means there is an 

entry say call it i naught j naught th entry. 

In the matrix a which is not divisible by a 11, some entries somewhere which is not 

divisible by a 11 then what you do in that case? So, it is somewhere here. So, I want to 

bring it to this position first I will inter change that to the row the first row and it will 

come in the first row that means. 
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So, we may assume that i naught is 1 that was any entry in i naught th row and j naught 

th column, here this was this was a entry here which means a i naught j naught. So, I will 

inter change this i naught through the first row and I would bring it here that is allowed 

because we are allowed to do row and column operations. So, that entry has become now 

in the new notation i naught is 1. So, it is a 1 j naught and these entry is not divisible by 

11. So, what can I do? I divide; I use a divisional algorithm to divide this entry by a 11 

and take a quotient and remainder. So, write this as q times a 11 plus r where q is a 

quotient and r is a remainder. 

Of the division by division by when you perform division by a 11 and both are this is 

integer both are integers and normally that the I can assume this r is in between 0 r 

cannot we 0 because a 11 does not divide r is less, then it is bigger than 0 and less then 

the modulus of a 11, this is how the division algorithm is used in the ring Z, similar these 

an algorithm you can use it for the polynomial ring (Refer Time: 12:45) ring etcetera, 

etcetera more generally the (Refer Time: 12:48). 

Now, what is the next procedure? Now I want to subtract. So, subtract q plus 1 times first 

column from j naught column, I want to use this operation. 

So, what does; what will these do? So, what is the first column is the entry here is. So, let 

me write again the first column entry here is here was a 11 and here is somewhere a 1 j 

naught. So, we are going to multiply this column the first column by q plus 1. So, and 



subtract it from here. So, these entry here what will it become a 1 j naught minus q plus 1 

a 11. So, I will get this entry here. So, this entry will become this entry, if I do this 

operation, but after this I will write here and then add new; I will get a new column here.  

This new column; this new j naught th column; I will add it to the first one and then add 

new j naught th column to the first one to the first column. So, let me repeat what did you 

do we are multiplied this column by q plus 1 and subtract from the j naught th column, 

now you get a new j naught th column that new j naught th column, I am going to add it 

the first column; that means, the new entry in the first column here this entry, let me use 

the black color, this entry will become further here I will add it to a 11, this will be the 

new the entry here, but these entry is what this is precisely r the remainder because this is 

because of this equation this is a 11 these will get cancelled with this and we are left to 

this and that is precisely the r. So, therefore, I have reduced this size, I reduce the 

modulus of this a 11 is clear  

So, therefore, what do we obtain let us write their result therefore, we obtain a matrix 

following form r is here somebody is in the first column first column here and there is 

matrix a 1 here. 
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And apply induction I will say and apply induction similar process if that j naught see 

there was a j naught also know if. So, this are this are the cases we have to put them 

altogether. So, if j naught is also one then. So, here in case of just let me remained you in 



case of i naught i 1, we have performed column operations if this was the first column 

the j naught was first and somewhere entry below if i naught is 1, apply these if j naught 

where one then it will be the entry in the row and then I will apply row operations. So, j 

naught is 1 then the same process as above columns replaced by rows column operations 

column operations replaced by row operations in any case the top entry will be will be 

smaller, then a 11 magnitude also now if assume both i naught is not 1 and j naught is 

also not 1 and a 11 divides both this entry a 1 j naught and a i naught 1, there I will make 

three possibilities three possibilities are 1, 2, 3. 

What are the possibilities? Again I will subtract. So, subtract because of this what will a 

1 j naught divided by a 11 times first column from j naught th column and this one is 

now instead of rows and I have to write the corresponding statement here a i naught 1 

divide by a 11 first row form i naught th row and add i naught th row to the first row. If 

you do this if do this operation then what do you get? So, let us write the result and may 

be which is here to you see what do get? 
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So, I will write a final answer. So, we will get; so original entry was a 11 here and we 

will get 0 here this is a j naught column and similarly you will get. 

So, what will be the entry here v in i naught th row the entry here will be here it is a i 

naught j naught minus a one j naught divided by a 11 and a i naught one and now this 

entry here is not divisible by not divisible by a 11, since a 11 does not divide this and 



divide this. So, we will the matrix with this here that will become a case one that it does 

not divide and then we are we will apply induction. So, you see the i d i is to reduce the 

magnitude of the entries and which is this prove is. So, whatever after that we are going 

to get after this operation we are going to get a diagonal matrix this process here is very 

constructive. 

In particular, we will also know this operation very precisely namely we will know this 

matrices says B 1 to B p and C 1 to C q this matrices says this elementary matrices are 

explicitly known are explicitly known because a only one entries of diagonal we have to 

know it and that we know that exact procedure we are applying. So, once we know them 

we also know their inverses explicitly and hence their inverses are explicitly known 

because inverse of the elementary matrix is very easy by whichever entries of diagonal 

the inverse is want to find just replace that entry by minus of that and then it become the 

inverse of that elementary matrix and all these inverses also have r, r matrices have 

integers entries because the inverses are nothing, but which ever entry was non 0 you 

replace by that minus of that. 
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Then what did we do? So, therefore, the integers that diagonals the diagonal entries 

which we are calling it e 1 to e k their integers and also they are uniquely determined by 

the matrix a possibly up to element in Z cross which is plus minus 1 that is up to sign up 

to sign this e 1 to e k uniquely determined up to the sign and this e 1 to e k. 



They are called elementary divisors of a and the products their products d i is their 

products up to i e 1 to e i and that can be up to i from 1 to r because the later products are 

0. These products are called; these are called determinant divisors of a this, what 

determinant will be explained, later when we have introduce the determinants. So, again 

the explicit the precise proof of the statements with all the case, I will write in the notes 

where one can check all the details more precisely, but now I want to give 2 applications 

2 important applications we want to give 2 important applications of elementary divisor 

theorem. 

So first one this is in the theory of Abelian groups in the theory of Abelian groups and 

finitely generated. So, I will write Abelian groups as additive groups additive notation. 
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So, let us start with an Abelian group G. So, G Abelian group generated by finitely mini 

elements, let me call it x 1 to x m, this means this means the smallest subgroup generated 

by this x 1 to x m is G and the smallest subgroup which contain all the x 1 to x m are 

precisely the Z linear combinations of this x one to x m with integer coefficients a 1 a i x 

i i is from 1 to m where a i’s are integers. This is the smallest the smallest subgroup same 

terminology, what we have been using for vectors spaces of G containing all x 1 to x n, 

this is the meaning of G generated by x 1 to x m; that means, very element of G in G is 

of combination of x 1 to x m with integer coefficients what does that mean that mean let 

us convert it to maps. 



So, this means we have a group here the product group Z n Z m and we have a group G 

here and we have a natural map here these map is given by this excise. So, where the m 

tuple go x 1 to x m, a 1 to a m integer tuple m tuple goes to the combination a 1 x 1 plus, 

plus, plus, plus, plus, plus a m x m.1 This is a group of homomorphism that you can 

easily check from the fact that it is an Abelian group and because it is generated, this is G 

generated by x 1 to x m; that means, this map is surjective. Surjective is equivalent to 

saying that the smallest subgroup is G. So, we have a map from Z m to G, this is a group, 

this is an Abelian group which has a basis namely the standard basis G may not have a 

basis. So, we cannot talk about rank etcetera and so on. So, this map is surjective 

whenever we have a surjective map there is a kernel and the isomorphism. So, therefore, 

if I go mod the kernel, so let us call this map as phi. 

So, Z power m module the sub group kernel is isomorphic to the image, but the image is 

G this is a group isomorphism so; that means, we have proved that any finitely generated 

Abelian group is a isomorphic to the quotient group of Z; Z power m module the kernel. 

Now first I want to note that this kernel is also finitely generated. So, and once it is 

finitely generated, I will choose generating set for that and do something with the 

generating set. 
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So, first we will prove that kernel phi is also finitely generated in group there is a no 

reason for a subgroup to be finitely generated there are examples of non Abelian groups 



and subgroups where the groups may not subgroups may not be finitely generated. Even 

if the group is finitely generated, but an Abelian group in this is very special situation 

well this also is clear form. So, this is those who know little bit more algebra this is clear 

from the fact that (Refer Time: 34:50) Z power m is a Noetherian Z module because if it 

is Noetherian means finitely generated and all sub modules are also finitely generated 

and kernel is a sub module of a Z power m and Z power I mean Noetherian. Therefore, 

kernel is finitely generated, but I want to give a proof which is simpler, this we will do it 

next time. 

Thank you very much. 


