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Lecture – 43 

Computation of the rank of a matrix 

 

Now, come back to this another half and then let us talk about rank just now I approved 

that row rank of a matrix is also column rank and this common rank I will keep calling a 

rank, and as we have seen the proof was computational and it involves coordinates and 

so on, but now I want to give second proof which will be less computation and with this 

one should realize that it is better to study linear map then the matrices. 
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So, second proof. So, this we have given this matrix a which is imagine this is a i j, i in I 

j in J, but 1 should think really this is a linear map f, f a which is from the vector space K 

power J to K power I namely I should tell you where the basis goes. 

So, the basis e J the standard basis e J here is map to the element summation a i j e i and 

note that this this e i on the right side is basis standard basis of K power i. So, this is a 

linear map and whose matrix with respect to the standard basis will be then the given 

matrix a just also to a word this confusion between the standard basis here and here you 

can also think directly this is f is the map a comes from a map f vector space V to W and 

this vector space V is with a basis v i v J numbered by the same indices have the columns 



are indices column index and this is V and this is a W is the vector space with basis w 

and basis of w numbered by the set i. 

And if you want the linear map we just have to give what is f of v j for all J, but well 

defined f of v j by this formula and this way we do not have confusion with this standard 

basis and coordinates and so on. So, therefore, this matrix a you can think a linear map f 

and again if you take this matrix f the matrix of f with respect to this basis this is 

precisely the given matrix a. So, if I want to prove the rank of row rank of a equal to 

column rank of a, I will have to prove that prove the relation a row rank is nothing, but 

row rank is nothing, but the dimension of the image that is rank of f sorry column rank is 

nothing, but the dimension of the image face of f, and row rank will be nothing, but the 

dimension of the the image of f star. 
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So, note that let me write it note that we have proved earlier that rank of f equal to rank 

of f star f star; where f star is a map if f is a map linear map from V to W, f star is a map 

in the other direction and if you take a basis V here W here the corresponding duel basis 

w star and v star and we know the relation between the matrices also that is the matrix of 

the basis matrix of the linear map f star with respect to the basis w star and v star this 

matrix is the transpose of the matrix of f with respect to the basis v and w; this we have 

proved last time and this rank of this matrix that is column rank of this if therefore, the 

row rank of this. 



So, this is rank of m w star v star f star, but this is nothing, but the row rank of m v w f 

and this is a column rank. So, we altogether we approved column rank equal to rho rank. 

So, now let us come to the computational part. So, now, I want to address. So, let me 

write this as an example computation of ranks, I am not going to discuss numerical 

example. So, three by three, four by four matrices which whose entries are actually 

numerals I am not going to discuss them, but I want to do it little bit more theoretical 

way. 

So, how does one compute the rank of a matrix more effectively or relatively easily. So, 

the rank of matrices can be determined relatively easy by using so called elementary 

operations on rows and columns, but I will strict to rows first. So, what does 1 mean by 

this? So, let us. 
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So, let a b a matrix whose rows and numbered by I, a columns are numbered by J entries 

in the field K and I J are finite sets, and I want to now change this a to some other matrix 

a prime without changing the row space. So, when I say row space of a; that means, a 

subspace generated by the rows K subspace generated by rows of a. 

So, this is same as summation in our notation summation i in I K R i where R i is R i is a 

row of ith row of v and this is a subspace K subspace of K power J. So, I want to get a 

new matrix a prime from a by doing some operations without changing the row space. 

So, that the row space do not change, but a prime become simpler in some sense so; that 



means, I want to get more a zeros in the matrix entries of a prime. So, if the row space 

does not change then the ranks will be equal and then go and get and good simper that is 

the strategy; and what are the row operations we are considering. So, we consider the 

following elementary row operations on a there are three types. 
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The first type that is addition of the scalar times a times row to another row of a. So, that 

I want to write this in the notation. So, a is a scalar arbitrary scalar i is a row. So, i th row 

to another row and j is r j is another row. So, i not equal to j and I am replacing R j by r j 

plus a R i. So, the new matrix a prime and a they will only have all the rows are equal 

only jth row will be replaced by this new jth row of a prime, this is one operation and; 

obviously, here you see raise space is not changing because R j is replaced by this. So, I 

can always recover R j from this by using R i. So, in this case rank of a prime is not 

change the second type of operation is multiplying row by a non-zero scalar by a scalar 

which is non-zero a in K, a non-zero in notation; that means, we have a scalar a, a is non-

zero is very important field is also very important and the i th row is now replaced by a 

times i th row. 

So, the new matrix will have only the i th row is change, and that will be multiple of 

scalar multiple of the i th. So, it this is also clear that the row spaces not changing. So, a 

and a prime will have the same row space. Third one interchanging 2 rows; that means, I 

have 2 rows R i and R j in the original matrix and now you only I will positions are 



changing. So, R j will become R i th position R j will become R i th position and this will 

become j th position they are only interchanging. So, now, the row space is also clearly 

not changing. So, this I will going to get a new matrix use rank will be same and I will 

acquire more zeros I will give still more concurrent example, but also I want to remark 

here that operations 2 and 3 and I am not going to use column operation then also I am 

going to use very sparingly operation two. 

Reason being because in the next few lectures I also want to address for on the problem 

for computing the rank of not only a matrices with entries in a field, but matrices with a 

entries in the ring like integers, and for that I have I will not allow to you we are not 

allow to use by non zero scalars because in that case scalars are integers though integers 

are non zero they are not invertible in the ring so ok. 
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Let us further continue, now I want to recall already when we did gauss elimination in 

the gauss elimination, we demonstrated that row operations of a matrix we can transfer 

we can find a new matrix. So, that the rank actually you can see it what it is from the 

new matrix and. So, that will be like this. 

So, let me recall it. So, I will write the final matrix here what we have got from the 

original matrix. So, C 1 1, C 2 2, C r r and then below that everybody is 0, here also 0 

and here there may be some entries here also there may be some entries and how did you 

get this. So, we had original matrix here where c i i are non-zero for i is 1 to r. So, what 



did we do first we first found a top entry which is non-zero for that note that we might 

have had to use interchange the columns because all the columns will not have ha 0 

entries on 0 entries. So, we could have interchange the 2 columns also and then once we 

have a non-zero entry here we use this to use row operation true make the entries below 

that zero. 

And repeat this process. So, this way we have got on the diagonal you see it is not a 

square matrix. So, when I say diagonal it is a main diagonal. So, they will be may be 

rows or more columns are plus and so on. So, this is the main diagonal. So, some entries 

non zero and after that it become 0 0 0 above that we do not know what it is. So, and 

because. So, here only to note that we have we have allowed also to interchange 

columns, but we did not make the other column operations, and because we are in a field 

we could have made actually them 1 11 1 if you are working over a field, but if you are 

not working over a field still we have we have manage this for integers also, and here it 

is clear that the number of non-zero entries on the main diagonal is precisely the rank. 

So, so that is that was what the gauss elimination also I have the similar motivation and. 

So, another remark I want to make is in general the computing a rank of a matrices on 

the by using the computer software is can be difficult and can be more time consuming 

just because and also it may not compute the especially for real and complex numbers 

because the computer software’s will approximate the real numbers to some decimals, 

and when the entries become smaller computer will it ignore it and instead of that will 

become 0 entry and this will miss lead the calculation. So, whereas, the maximal rank 

one can compute the matrices which has maximal rank that you can do little bit better 

that I will come back to when I do it for integers ok. 

So, also next one is I also want to show that this row operations on the matrices also will 

allow us to compute inverses of matrices rather easily. Compute not only compute 

inverses also to decide whether a matrix is invertible or not and in that case what is a 

inverse both this we can do it simultaneously. 
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So, let me write one lemma for that. So, because we are dealing with a inverses of a 

matrix I want to start with a square matrix. So, I finite set and we have a squire matrix a 

is in M I K this is square matrix. Now rows and numbers are numbered by a the same set 

i then the following are equivalent 1 a is invertible that is there exist a matrix b with a b 

equal to identity, this is enough or b a equal to identity this last time we saw it one of 

them will imply the other because finite dimensional i is finite that is very important. 

Two: the columns of a are linearly independent and one they are linearly independent 

they are correct in number and hence basis form a basis of K power I. Three once you 

say something about whenever you have matrix and say something about columns one 

need to say something about rows also. So, the rows of a are linearly independent and 

hence form a basis of K power I. Fourth a as a maximal rank that is rank of a in this case 

equal to cardinality of I. So, let us see the proof again proof I always want to see a proof 

by using a linear map. 
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So, let us proof lets go to linear map remember our matrix will give a linear map f a 

which is from K power I to K power I; e j th vector here e j th standard basis vector here 

will go to summation a i j, e i or every j in J this e j j in I standard basis and in this case 

there is no confusion because the same set. 

Now, the matrix of matrix of f with f a with respect to the standard basis this is the given 

matrix a; and we know we have proved matrix is invertible if and only with the linear 

map is an automorphism. So, a is invertible if and only if f a is an automorphism K 

automorphism; and what is the image of f a image of f a is the column space of a by 

definition column space is of a, matrix is the subspace generated by the columns C js are 

columns j th column. So, the column, the column what is the statement here I just want 

to show you this one, second one columns are linearly independent that is equivalent to 

saying it is a basis, if it is a basis; that means, f of image of f of a must be the whole. So, 

image of f of f suffix a is the whole K I if and only if 2. 

A first was invertible, but the 2 if and only if this means f is surjective. So, this means f a 

is surjective, but once f a is surjective that is if and only if f a is bijetcive, that is it is an 

automorphism. So, that proves one if and only if let us one if and only if 2 it proves, and 

similarly 1 if and only if 3 be then instead of that; then I will apply I will apply the same 

remark to the not to f, but the f star and rows and columns will get interchange and so on. 

So, replace f a by either if you want in a matrix it is f a transpose or f a star whichever f a 



start is nothing, but this. So, then as a remaining are equivalent that is clear. So, that 

proves the lemma all right. 
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Now, about finding the inverse, now, let us take arbitrary n cross n matrix n cross n 

matrix a which is a i j, 1 less equal to i j and this is a matrix square matrix of order n and 

we are looking for inverse, we want to decide to decide if a is invertible and to compute a 

inverse, if it exist we consider a matrix x, here x is a matrix, but the entries are variables 

x i K let me call it small j small small x i k; k is a j k is are 1 less equal to i k less equal to 

n. So, it is also n cross m matrix, but I want to determine exercise that is why call them 

variables and then I will come back we will see what we want. So, what we are looking 

for we are looking for such a matrix x, so that a times x becomes identity matrix. 

So, I want to compute this x i k. So, that this this equation, but what are this equation 

means let us write down this means what is the i K th entry here; i K th entry on the left 

side i K th entry of LHS equal to that will be the i th row of a times j th column of x, not 

j th K th column i th row of a times K th i th row of a times K ith column of x. So, that is 

a i 1, x 1 k, plus a i 2 times x 2 k and so on plus a i n, x n k correct this is equal to i K th 

entry on the right side, but i K th entry delta i K this is kronecker symbol. 

So, it is a linear equation a nominee variable will be a linear equations in these variables 

x 1 K, x 2 K, x n K. Now, therefore, I will linear system of equations and this linear 

system the coefficient matrix. 
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So, this system of linear equations coefficient matrix if the given matrix a and we want to 

we want to solve it simultaneously for that one user the gauss elimination. So, use the 

gauss elimination. So, that the matrix. So, that the matrix a will get change to the new 

matrix like this diagonal C 1 1 C 2 2 which is square matrix C n n below that 0 above 

that somebody. 

Now, it is clear that if all these cs are non-zero if all C i i non zero for i equal to 1 to n 

then then there is a solution a gauss elimination says now and then a is invertible. So, 

remember what we have done is a following, let me just go back and show you see we 

wanted to solve this equation this this equation and we are making row operations in an 

gauss elimination on the matrix a. So, this is the same operations you are making on the 

identity matrix. So, here when you make the gauss elementary operations we have made 

the matrix a like this. So, the equation became this this times x this times x equal to this 

matrix as change and now first we decided that it is invertible or not how to test it only 

the diagonal entry should be non zero. 

And now in this case what we do one this is all these are non-zero this is non-zero in 

particular now I start making row operations from below. So, then there will they will get 

transformed to this again this identity matrix will get transformed. So, that will become 

that will solve this x because this this matrix will become identity matrix and then x will 

become matrix so; that means, I have solved for x also. So, this way we can find the 



inverse. So, if you do it the other way I just want (Refer Time: 37:07) if you want to 

solve instead of this if you want to solve this kind of this that also one can do it, but then 

instead of row operation you have to use column operations well this is also equally 

simple (Refer Time: 37:24) same. 

So, with this I will not like to do a numerical example what you can just one remark and 

then we can stop for today. 
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Suppose I take such a matrix suppose I take a matrix like this a three by three case 1, 2, 4 

0 minus 1, 1 and 2, 3, 8 this is three by three matrix with rational entries, and suppose I 

want to decide whether it has inverse and inverse exist not etcetera. So, what usually we 

does it you on this side you write this matrix 1, 2, 4, 0 minus 1, 1, 2, 3, 8 and here you 

write identity matrix and start making operations here and then you do the corresponding 

operations here and then this becomes the identity and then becomes the inverse that is 

what, but I you carry out this carry the elementary operations to find whether a as a 

inverse exist and then a inverse. So, we will stop them. 


