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Examples of finite dimensional vector spaces 

 

Welcome back to this lecture on linear algebra. Last time, we have been discussing some 

examples of dimension of vector space. I will continue this at least half of this lecture to 

discuss more examples on the dimensions. 
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So, if let V be say it is C-vector space, C is a field of complex numbers then we know 

that V is also R vector space by restriction and scalars; more over V is finite dimensional 

over C if and only if V is finite dimensional over R. In fact, from a basis of V over C, we 

can also write down basis of C over R. So, more over if v j, j in J is a C-basis of V then 

take this vectors v j, and also take i times v j, where i is the imaginary complex number 

which is a square root of minus 1 or better we put is say i square of minus 1. When v j 

along with i times v j they form an R basis of V. So, therefore, dimension of V as R 

vector space is two times dimension of V as a C vector space that is a twice. These we 

can do it actually more generally. 

More generally, if l over K is a field extension of finite degree. In the degree of a field 

extension is by definition dimension of a bigger field over a smaller field if this is m 



 

 

which is finite and if V is an L-vector space with basis with finite basis v i, i in I, then V 

is also K vector space of finite dimension. And the dimension as a K-vector space 

dimension of V as a K vector space is m times dimension of V as a L-vector space. This 

is very simple, again what you do is you take a basis of l over K and multiply each basis 

element by this basis and put together they will generate V as a K-vector space. 
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So, I will just write it down in fact if alpha 1 to alpha m in K is a K-basis of L then alpha 

i times v j, j in J and now i is varying on 1 to m is a K-basis of V. This is same proof as 

real vectors. So, however, these arguments do not work for a particular field extension R 

over Q, R over Q is also field extension, but not finite, in fact, not even countable, 

countable dimensional. In view of this studying vector spaces over Q is much more 

intricate then studying a real vector spaces or complex vector spaces. 

The next example, if you have a field K, then we will see in the polynomial. So, the 

polynomials the set of all polynomials with coefficients in K is a K-vector space. And by 

definition of polynomials 1, X, X, square X power n and so on as N varies natural 

numbers from of K-basis of K X, therefore dimension of K X as a K-vector space is 

cardinality N which is (Refer Time: 08:26), which accountable dimensional vector space. 

If for a fixed n natural number, if I restrict myself to the polynomials of degree strictly 

less than n, so these are all the polynomial F with degree of F strictly less than n. And 

this is clearly K-vector space, this is a K vector space which is a subspace of the vector 



 

 

space of polynomials. And 1, X, X power n minus 1 is a K basis of K X n that means, 

dimension K X n over K is precisely n. Now, next is if you know basis of a vector spaces 

and if you take the direction mode direct product, then you get a basis for the direct 

product vector space. So, this is a next example. 
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So, let us do it for two vector spaces first V and W be two K-vector spaces with K-basis 

v i, i in I, and w j, j in J, respectively. Then as we have seen earlier lecture V direct sum 

W, this is the product set with the component wise vector space structure is a K-vector 

space with K-basis. You put 0, first is v i in the first component then 0, i in I, and 0, w j, j 

in J. To check it is a basis, we need to check that it is the generating system and linearly 

independence, but that is almost clear from the definitions, because the vector space 

structure on the product, so it is component wise. So, one has to check that this is a 

generating system and linearly independent that I leave it for checking for. 

So, in particular what we get is we get a dimension formula that is dimension of the 

direct sum equal to dimension V plus dimension W, this is dimension formula. And 

nothing special about two vector spaces, one can do it for finite limit. So, let me just 

mention if v 1 to v n K-vector spaces then dimension of the direct sum v 1 direct sum 

direct sum v n is summation i is from 1 to n, dimension K V i. Note that this direct sum I 

want to not talk more about these now infinite case now, when enough machinery, I will 

discuss more about that. 
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Now, one more example, this example is useful for engineers, only the differential (Refer 

Time: 13:52) that the differential equations. So, let P be a monic polynomial with 

coefficients in either real numbers or complex numbers be a monic polynomial of degree 

n. And K is either C - field of complex numbers or field of real numbers. And what we 

are looking is whether differential equation consider, the linear differential equation with 

constant coefficient P D y equal to 0 - homogeneous. Here D is the differential operator d 

by dx. And we are looking for functions. So, what are we looking for solution space is 

precisely all those functions y which are functions in one K to K and also K y should be 

m times differentiable, and it should satisfy this equation P D y 0. So, let me call this 

solution spaces V. 

First, I will note that this V is a K-vector space. This is immediate from the fact that the 

differentiation is a linear map if the differentiation is specs addition and also the specs 

the scalar multiplication. So, it is a K-vector space and actually one can write down 

explicit basis for this vector space that is what I am going to do. To write down to write 

basis of V, what we need to do is you look at this polynomial P, and this is your 

definitely either real or complex coefficient polynomial, but over this complex numbers 

definitely it will split into linear factors. Because C the field of complex numbers and we 

know it is algebraic close field, therefore every polynomials splits into linear factors. 



 

 

So, this polynomial will look like X minus lambda 1 power n 1 X minus lambda 2 power 

n 2 X minus lambda r power n r, where this lambda 1 to lambda r are complex number 

some of them could be real, complex numbers. And these n 1 to n r are natural numbers 

nonzero natural numbers, they are precisely the multiplicities. So, n i is a multiplicity, n i 

is a multiplicity of lambda i or i is 1 to r. In terms of this lambda and in terms of the n i 

we are going to write down a basis of V and in that and then we will know what is the 

dimension of this vector space. We will explicitly know how many linearly independent 

solutions are there. 
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So, then the Quasi-polynomial. These functions which below I will write down, they are 

called Quasi-polynomials. What are they start with the exponentially e power lambda 

one t this is exponential function. Then t times e power lambda 1 t go on till t power n 1 

minus 1 times e power lambda 1 t. Then start with lambda 2 e power lambda 2 t t e 

power lambda 2 t go on till t power n 2 minus 1, e power lambda 2 t and then keep doing 

this for all lambda. So, e power lambda r t, t e power lambda r t, last one is t power n r 

minus 1 e power lambda r t. 

So, this is a block each root will give you this block, there r blocks these quasi-

polynomials from a C-basis of this solution space V. This is very easy to check we have 

in fact, we have checked in earlier lectures that these functions are linearly independent. 

And they generate is a typical theorem one two is an analysis course. So, I will not prove 



 

 

it here, but maybe i will write the proof in supplements. So, in particular, the dimension, 

so see supplements. In particular, the dimension if the cardinality of a basis, dimension 

of a solution space is therefore, n 1 plus n 2 plus plus plus plus plus n r, but this is 

nothing but the degree of n equal to degree of p. So, what we are noted is the solution 

space of a linear differential equation with constant coefficient equal to the degree of the 

polynomial that is a set. 

So, now, I want to give couple of remarks about how do we minimize our checking to 

check somebody a basis of vector space or not, because to check it is the basis of a vector 

space, we need to check two things one is the generative system and the other is a linear 

independent. So, somehow if you know earlier or by some other means that the 

dimension is known, then how do you decide given vectors from a basis or not. So, this 

is precisely the content of the next theorem. 

Theorem says so let V be a vector space, and V be a vector space of dimension n. And let 

v 1 to v n are n vectors given in V. Then the following are equivalent 1, v 1 to v n is a 

basis; two - v 1 to v n is a generating system for V; and three - v 1 to v n are linearly 

independent over K. So, this theorem says if you know that they are correct in number 

then you only have to either check generating system or linearly independent then it will 

identically linear basis. 
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For example, the proof is very easy I just show on to indicate only. The proof, one 

implies two, and one implies three, they are trivial, because basis should be generating 

system also and basis also should be linearly independent by definition. So, to prove for 

example, two implies one that means, is a generating system we have given and the 

number is correct then want to prove it is a basis. But just note that we have noted earlier 

given any generating system by throwing away the unnecessary elements, we can arrive 

at minimal generating system, and minimal generating system is a basis that is what we 

have proved earlier. So, if at all a generating system is a not a basis then we can cut 

down, but that is not possible in this case because when we will get a basis who as a 

fewer elements, but we have checked yesterday in last lecture that any two basis have the 

same number of elements, so that is not possible. 

Similarly for the linear independence, so check that I will just mention here check that 2 

implies 1 and 3 implies 1. Also I would like to mention one more theorem like this which 

is very useful sometimes to check to compute dimension exactly, so that is a next one 

which use proof also I will omit, because it is similar to the theorem you have just 

mentioned. 

So, let V be a K-vector space, and n is a given natural number, then first statement V is 

finite dimensional of dimension less equal to n if and only if every n plus 1 vectors in V 

are linearly dependent. This is because we know if you have a basis consist of n elements 

less equal to n elements, and if you take any n plus 1 vectors, they cannot be linearly 

independent because if they where linearly independent then we could extend it to a 

basis of v by exchange theorem. But then the dimension of V will be more than n, n plus 

1 bigger equal to n plus 1 that is not possible. Similarly, we can write down equality 

here. So, V is finite dimensional of dimension n, if and only if of course, this part will be 

same every n plus 1 vectors in V are linearly dependent, and there exist n linearly 

independent vectors, vectors in V. So, the proof is similar to that of one. Now, these are 

the statements about linear independence and dimension. 

Now, similarly I will write down two analogous statements, which will involve 

generating system. So, third - V is finite dimensional of dimension less equal to 1 less 

equal to n, if and only if V as a generating system consisting of n vectors. If it has a 

generating system consisting of n vectors then by cutting down we make a dimension 

smaller equal. One more and in we will make a break. Again V is finite dimensional of 



 

 

dimension equal to n, if and only if of course, V has a generating system with n elements 

n vectors and every generating system has at least n vectors, and in every generating 

system should have more bigger equal to n vectors. So, we will stop for a break, and we 

will continue soon. 

Thank you. 


