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Examples of a basis of a vector space 

 

So, let us continue our next lecture. 
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Let me just recall last time we have defined concepts of; 3 concepts we have defined last 

time; one generating systems for vector spaces. Let me also fixed a notation today also 

like yesterday that K be always field arbitrary and V K vector space and last time we 

have defined this 3 concepts generating system for vector space V 2 linear independence 

of an arbitrary family V i i in I of vectors is V and 3 basis for V and the most important 

thing we will keep using is the following theorem what we stated last time that. So, I will 

write again completely because this is the most important statement for this subsection 

let V be a vector space and V i i in I be a family of vectors in V, let f be a map from K 

power round bracket I to V defined by any tuple a i i in I which is in K power round 

bracket I goes to the linear combination of this a is a i V i. 

So, first of all, let me remind you that when we write K power round bracket I we 

consider those tuples for which almost all a i is are 0; almost all means all, but finitely 

many tuples are components are 0 and therefore, this sum when we write it make sense 



because in this sound really only finitely many a i's are nonzero. So, some make sense. 

So, we have a map from K power I to V then we have translated this concepts in terms of 

this map. So, one V i i in I is a generating system for V if and only if the map f is 

surjective this is simply a restatement of the definition of a generating system because 

surjectivity means every element X in V is coming from some tuple; that means, every 

element takes as a representation of linear combinations in terms of V x. 

Second V I; the family V i is linearly independent over K if and only if f is injective, this 

is also immediate from the definition of linear independence because linear independent 

means if a linear combination is 0 then each coefficient is 0. So, if some tuple goes to 0 

then the tuple it is a; it should be 0 and tuple 0 means all components are 0; third one 

now combining 1 and 2 by definition basis is a generating system which is linearly 

independent. 

So, V i i in I is a basis of V over K if and only if f is injective and surjective; that means, 

f is bijective and most of the time we will use this theorem and beside that this will also 

given later on way we consider isomorphism etcetera it will tell us that every vector 

space V is a isomorphic 2 on of this type. 
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But I will repeat this when time comes. So, I want to see some examples. So, in these 

examples let us; K always denote field arbitrary when I take this special cases of field I 

will indicate that term and so first one this is standard basis. So, let let I be any; I will 



call it indexed I, usually indexed means the set which is used for indices for enumerating 

the elements of some set and consider the vector space K vector space K power round 

bracket I once again I will write here these are all tuples such that almost all a I’s are 0 

these are the tuples in K power I 1 can also think they may as functions also think they 

may as functions f naught, I do not want to call f, now functions phi from i to K such that 

this condition will get translated phi of i equal to 0 for almost all i in I. 

So, we are seen in earlier lecture that this is a K vector space and now I want to give 

some family here which we will test whether it is a basis linear independence generating 

system it is a; so for each i in I, we have this standard tuple E i; E i is if you like delta a j 

a delta j i j is varying here j is varying in I. So, think of this has a map from i to K, where 

i goes to 1 and any other j goes to 0. So, either you think as a tuple or you think as a map 

and it is clear by the definition of V i only i goes to nonzero entry. So, E i‘s are elements 

in this K power round bracket I and I want to prove that. So, we will check that E i i in I 

is a basis of K power round bracket I and this basis is called and is called the standard 

basis of K power I over K. 

So, to check it is a basis we need to check 2 things, it generates and family is linearly 

independent. So, first we will check that we are checking that E i i in I generates K 

power round bracket I over k. So, this means we should write, we should check that 

elements of arbitrary tuples a i i in I, K power I round bracket I is a linear combination of 

this, yes with coefficients in k, but note this tuple a i is a sum a i E i i in I this is obvious 

because when you the first of all sum on the right side make sense because only finite 

many as could be nonzero and secondly, when you expand it and compare the 

components it is clear that i th component in this right hand sum is E i which is i th 

component in the tuple a i also. 

So, therefore, these are equal and this precisely means that any tuple in K power round 

bracket I is a combination of linear combination of the elements E i therefore, it 

generates K power I. Now, second thing we have to check that they are linearly 

independent. 
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So, this is b we have to check that the family E i i in I is linearly independent over k; that 

means, we need to check that. So, we need to check. So, to check that if a linear 

combination of E I, a I, E i is 0 and again I will; so, this a i tuple is in K power round 

bracket I. So, this means its indeed a finite linear combination then we want to check that 

from these we want to check that all a I’s are 0 this is what we need to check, but if you 

take we have given this sum is 0. 

So, if you check what is the i th component, i th component in l h s is precisely a i and 

so, if this tuple; this is a tuple if this is 0 then i th component if 0, but then i th 

component is a i. So, a i is are 0. So, this follows from that. So, we have check that it is 

linearly independent and therefore, therefore, E i is family E i i in I is a basis of K power 

I round bracket I. So, you remember last time also I would define concepts of coordinate 

functions with respect to a basis, I just want to recall. So, if V i as a basis of V then we 

have defined for each i i in I we have defined a functions from V to K by using this basis 

and that we have called it V i star. So, any vector X here goes to V i star X this is by 

definition i th component i th component of a tuple a i i in I where this tuple a i s 

uniquely determined by this equation X equal to summation a i V i i in I this tuple is in K 

power 1 bracket I. 

So, because this is a basis each vector X can be written uniquely in this form. So, this 

tuple a i as only finitely many nonzero entries f four it is here and this coefficients a i’s is 



this is what map h goes to a i. So, this called the coordinates of this V i X is called i th 

coordinate of X with respect to this given basis and then we could have also written this 

as summation i in i V i star X V i. So, you say this is the idea of writing this is it only 

depends on X and basis V i. 
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So, now in this in the above case what are the coordinate functions with respect to this 

standard basis? So, coordinate functions the standard basis E i i in I of the vector space K 

power round bracket I are what maps they are precisely. So, the in; they are maps from K 

power i to K and these are E i star and these are precisely the projection map this is map 

to a i this is. So, E i star is precisely the i th projection. 

So, let us take a special case for when I is a finite set special case when I is a finite set 

and that to one to n in this case K power round bracket I is same thing as K power I 

which is also sometimes we are denoted by K power n which is K cross K cross K n 

times this is the Cartesian product of K n times and e 1. Now we have e 1, e 2, e n. So, e 

1 is a first position one and then the remaining 0s, e 2 is second position 1 and the 

remaining 0s, etcetera, e n is the last position is one that is n th position 1 and 

everywhere also it is 0. So, this is a standard basis of K power n and coordinate functions 

E i star or e 1 star let me say e 1 star from K power n to K this is the first projection. So, 

a 1, a 2, a n goes to a 1 etcetera e n star is this n th projection that is this a 1, a 2, a n tuple 

goes to the last component a n that is n th cord; n th projection. 



So, this is the standard basis. The next example; example 2, if family V i of vectors in V 

is linearly independent it may or may not generate V, but the linearly independent means 

if a linear combination of V i is 0 then each coefficient of 0, in this case, we cannot say it 

is a basis of V because we may not know that it is generating set for V or not, but surely 

what we can do is you can take now us subspace U, U is a subspace generated by this 

family V i is that is remember this notation, we have; we denoting like this K V I, this is 

the subspace of V generated by this family V i this means by definition it is a smallest 

subspace; the smallest subspace of V which contain all V i’s and we have seen earlier in 

earlier lecture that such a subspace has an nice description that every element of that 

subspace is a linear combination of V i’s. 
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So, definitely, now we can say that this V i i in I is a basis of U over K because by 

definition now U is generated by V i’s and to start with, V is a linearly independent 

family. So, this is a basis of U I, now next I want to recall third one; I want to recall for 

future also couple of remarks about polynomial form polynomials first about 

polynomials after this, I will come to polynomial functions after this I will come to 

polynomial function and after that I will even come to rational functions and after that 

even I come to many more interesting functions which will be very useful in analysis 

courses for example. 



So, let K be a field and this actually one can do more generally that they can even a do 

not even need to assume that K is a field, but I will restrict it in these course only the 

field. So, everybody know what a polynomial is polynomial f in 1 variable X is an 

expression like this a 0 plus a 1 X plus plus plus plus a n X n where these X 1 usually 

calls it indeterminate or also call it variable and these are the formal expressions one can 

also think of them as a vector a 0, a 1, a n and 0, 0, 0 because I want to think this as an 

element n K power n. So, if they are round bracket n note that only finitely many terms 

are nonzero could be nonzero and the last one where it is nonzero if this is nonzero then 

one calls that n as a degree of F. 

If everybody is 0 then the degree is not defined. So, that is the 0 polynomial. So, this is 0 

tuple corresponds to the 0 polynomial, this corresponds to F equal to 0 polynomial; 0 

polynomial. So, the degree of a 0 polynomial is not defined, this n is called; this a n is 

called the leading coefficient of F L C of f leading coefficient of F and we will now how 

do we add polynomials add it component ways. So, if you have one polynomial f X and 

normally even drops this X in the notation of the polynomial I will just call it capital F, 

this is a 0 plus a 1 X plus plus plus, plus a n X n G is another polynomial b 0 plus b 1 X 

plus plus plus plus plus b m X m a n is nonzero b m is nonzero, this is n is the degree F 

m is the degree of F degree G and then you F plus G same as we have been doing it in 

this add it component wise and put that a corresponding coefficient. 

So, this is a 0 plus b 0 plus a 1 plus b 1 X and so on. So, it will depend on whether m is 

smaller or bigger and so on. So, this is very well also you can multiply by scalar a F is 

clear out a multiply you push that a inside everywhere. So, that is this is summation this 

also one can write summation from i equal to 0 to n a; a i times X power I. So, that is 

how we add polynomials we also have learned to multiply a polynomials now 

multiplication of polynomials is rather complicated in the sense we first multiply the the 

for multiply the powers of the variable X i X j X power i plus j and then use distribute to 

law to expand. 
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So, that is how we X extend this multiplication to the polynomials. So, this will be 

summation c K X K, K is from 0 to wherever m plus n here and C K is are defined by 

summation a i times b j this summation is learning more i plus j equal to K. 

So, these are the usual formulas for the polynomials over a field and so, therefore, 

important thing to notice note that this K the set of polynomials this I denote by K square 

bracket X this is the set of all polynomials with coefficients in K. So, on this set we have 

2 operations we have defined addition multiplication. So, with that becomes a 

commutative ring with multiplicative identity the constant polynomial one and the 

additive identity with respect to plus the Newtonian element is the 0 polynomial. 

More than that we also have a scalar multiplication we also have scalar multiplication all 

K X scalar multiplication of K on K n. So, this makes this K X as a K vector space and it 

is very it trivial to see that the commutative ring structure on this vector space structure 

are compatible with each other. So, I will just say that the ring structure and scalar 

multiplication are compatible with each other. So, this means whether; so when one says 

ring structure; that means, this binary operation plus and the multiplication and scalar 

multiplication is the scalar multiple. So, whether you add first and then scalar multiply 

all scalar multiply add and multiply all these operations are compatible with each other. 

So, for us very important here now I want to study we want to study first I want to study 

the K vector space of polynomials all polynomials. 



So, for example, extracting generating set or whether is it linearly independent whether is 

it a basis or any elements it as etcetera, etcetera and many subspaces which will arise 

from this space of polynomials. 
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And, before I end with the polynomials, important things to note here which I will 

assume without proof this is exactly similar to that of ring of integers like we have seen 

in case of ring of integers fundamental theorem of arithmetic prime numbers division 

with reminder Euclidian algorithm GCD etcetera, etcetera that also make sense in the 

polynomial ring and the most important thing is like a what is called division with 

reminder this is the route of many things. 

So, that is if I have 2 polynomials F and G with coefficients in the field K. So, K field is 

very important here and if G is a nonzero polynomial then I can divide f by G and write 

coefficient and reminder. So, then there exist polynomials Q and R with coefficients in 

the field this Q will be called coefficient and R will be called reminder. So, that the 

polynomial f we can write it as Q times G plus R with either R is 0 or degree of R is 

strictly smaller than degree of G. Note, here I have we can assume carefully and I have to 

say this separately because we have not defined degree of a 0 polynomial. So, therefore, 

this is necessary to mention and also degree G make sense because our assumption is G 

is 0 and now from this Euclidian with we can go on from these division with reminder 



we can go on to define what is Euclidian algorithm we can define what is the GCD, we 

can define what is the l c m also we can define what are irreducible or prime elements. 

Exactly, exactly as we did in the case of integers, so when I say prime; prime 

polynomial; that means, irreducible polynomial with leading coefficient one leading 

coefficient one the last remark and we will have a break the units in the polynomial ring 

K X are precisely nonzero elements in the field that is we are denoting by K cross and 

this follows this follows which follows this follows easily from what we call it a degree 

formula if we have 2 polynomials degree of F time G equal to degree f plus degree G for 

F G in K X both nonzero this is very easy to prove because we look at the product and 

look at the coefficient of X power n plus n and it be will a coefficient of X power n in f 

and coefficient of X power m in G and. So, both are nonzero. So, the product will be 

nonzero because we are in a field. So, let us have a break and then we will resume soon. 

Thank you. 


