Ordinary Differential Equations
Prof. Raju. K. Geroge
Department of Mathematics
Indian Institute of Science, Bangalore

Lecture - 8
Analysis

Welcome to the new module on this course on differential equations. We will also be
concerned in this course to do some theoretical aspects of differential equations, and we
will state and prove the existence and uniqueness theorem. For that purpose we need to
get familiarized with some of the concepts, basic concepts of real function theory. In this
lecture, we will discuss about convergence of sequence of functions; 2 types of

convergence we deal with namely, the point wise convergence and uniform convergence.
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Some concepts of real function theory. So, first we deal with point wise convergence of
sequence of functions, and also we will do uniform convergence of sequence of
functions. Before we start the point wise convergence and uniform convergence of

sequence of functions, let us start with the convergence of sequence of real numbers.

So, definition say, called it definition 1, a sequence of real numbers, let us denotes this
by x n, is said to converge to the limit, call it x O if, given epsilon greater than 0, a
positive number, there exists a positive number denoted by N such that, absolute value of

X n minus x 0, is less than epsilon, for all n greater than this number, N. So, a sequence



of real numbers x n, is to converts to a limit x 0, if this happens, that for all n greater than
N, the difference between x n and x 0 that is made less than epsilon. And, we denote this

by limit x n, as n goes to infinity, is equal to x 0.
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So, let us consider an example. We will consider an example of real numbers, sequence
of real numbers. So, example 1, let us consider a sequence of real numbers given by x n
is equal to n by n plus 1 where n goes from 1, 2, 3, etcetera. And then, we will see that,
limit of the sequence, limit n goes to infinity, x n, which is by definition limit n goes to
infinity, n by n plus 1 is equal to 1. So, that is, x n is known by n by n plus 1, and x 0 the

limit is 1. So, we will see how this happens.

So, for, so, given epsilon greater than 0. So, what we are looking for? We are looking for
X n minus x 0 which in our case n by n plus 1 minus x 0 is 1, you are looking for the
situation that this difference is less than epsilon. And, we know that, have for, this less
than epsilon for a large N. So, we need to find a N, such that for all n greater than that n

this difference is less than epsilon.

Let us consider this n by n plus 1 minus 1. This quantity, just by simplifying, it is, since n
is positive, this is 1 by n plus 1. So, we want this to be less than epsilon. And, a simple
manipulation shows that 1 by epsilon is less than n plus 1, or 1 by epsilon minus 1 is less
than n. So, therefore, this happens, 1 by n plus 1 is less than epsilon, if n is greater than,

strictly greater than 1 by epsilon minus 1.



So, what is the moral of the story? Is that, given epsilon greater than 0, there exists an N
which in our case, we could compute this as, 1 by epsilon minus 1, such that, X n minus x
0, which in our case it is 1 by n plus 1, is less than epsilon for all strictly greater than n;
this N is 1 by epsilon minus 1. So, from the, hence the conclusion is, the sequence X n is

equal to n by n plus 1 converges to a limit 1.
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So, this implies that x n is equal to n upon n plus 1, converges to 1, as n goes to infinity.
So, this is concerning a sequence of real numbers. Now, we will consider a sequence of
functions. So, you know, convergence of sequence of functions, consider a sequence of
functions denoted by f n, such that each f n is a functionary from an interval a, b to R.

So, real valued function defined on the interval, a, b.

And, we will now discuss about the convergence of this sequence of functions; when we
do say that, this sequence of functions converges to some limit function. Now, let x be
any fixed real number in the interval a, b. Now, consider the sequence of real numbers,
consider the sequence which is value of the functions f n, evaluated at Xx. So, now, this is

a sequence of real numbers.

Now, consider the sequence, f n (x), of real numbers. Now, this sequence of real
numbers for every fixed x is set to converge to a limit, call it f (x). If we can find a
capital, for a every epsilon greater than 0, we can find N, such that the difference

between f n (x) and f (x) is less than epsilon for all n greater than N.



So, now, this f n (x), this sequence of real numbers is said to converge to a limit, say f (x)
for a fixed x, in the interval a, b. If, for every epsilon greater than 0, there exists a
number n, such that, this difference f n (X) minus f (x), the absolute value of f n (x)
minus f (x) is less than epsilon, for all n greater than N. So, this sequence of functions
when it is evaluated at point x, it turns out to be a sequence of real numbers. So,
therefore, the convergence of sequence of functions at point turns out to be a

convergence of a sequence of a real numbers.

So, this sequence is said to be, said to converge to a point, a limit f (x) if this happens.
And, if this happens for every X, in the interval a, b; so, if this convergence happens at
every X in the interval a, b, then we say that the sequence of functions f n converges to
the function f (x) point wise on a, b. So, this defines a point wise convergence of

sequence of functions, defined on some interval a, b.
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Now, we give an example of a sequence of functions converging to a function point
wise. So, example, say called example 2. So, consider a sequence of functions f n,
defined by; so, we can see sequence of functions f n defined by f n (x) is equal to n X,
divided by n x plus 1, and for all x between 0 and 1, and here n goes from 1, 2, 3,
etcetera. This is a sequence of function, infinite sequence of functions defined by n x by

n x plus 1; here a, b is intervals 0, 1. So, a, b, you have definition is 0, 1.

Now, if look at the few terms of the sequence, say for example, the first 3 terms, when n
is equal to 1, 2 and 3; say, 1 (x) is x upon x plus 1, and f 2 (x) is 2 x upon 2 x plus 1,



and f 3 (x) is 3 x by 3 x plus 1, and so on. If you evaluate this sequence of functions at x
is equal to 0, say let x is equal to 0, which is point inside our interval, then f 1 (0), f 2 (0),
f 3 (0), and so on, will get the sequence f n (0) which is a sequence of 0s. So, obviously,
at x is equal to 0, this as values, the 0 sequence, that converges to 0. So, limit n goes to

infinity f n (0) this goes to 0, say by it is a limit, when x is equal to 0.
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S
it ow et St Tt

Ve P Y E e - [IH7-w- EENEEEED NOEEEEEY
Z
Eiv w.& ol wZ\ :
) = LS
£ froxt) o
\ LS =l
tn
n= e i ( %
o A=0
Ld -Yd‘!): AL ANt SERE VS
Conver Ay
g—?ﬂk o | ocng ) e )

n—d

Now, we consider for the case when x is no 0, but value in the interval. So, for every x
which is strictly greater than 0 and less or equal to 1, the sequence is the same, f n (x) is
n x by n x plus 1. And, if you look at the graph of the sequence, so, this is x and this is 'y
is equal to f x (r), the function, y is equal to f n x. And, if you look at the graph of the
sequence, say this point is 1, and you see that the graph may be f n (x) will have f 1 of

this type, and is say f 5 (x), and if look at say f 50 (x), so, this will be f 50 x.

And, we can show it, the limit n goes to infinity for x between strictly greater than 0 and
less than or equal to 1, n goes to infinity, n x by n x plus 1, this is equal to 1. So, this
goes to 1, and 1 is the constant function. That can be seen just by simplify this, n x by n x
plus 1, which if | take n common, n of x plus 1 by n, and as n goes to infinity, 1 by goes

to 0; and, n and n can be cancelled; and, you get this is equal to 1 as n goes to infinity.

So, therefore, for the values of x strictly greater than 0 and less than equal to 1, the
sequence of function f n (x), that converges to 1, the constant function 1. So, in short, we

write the sequence of function f n. So, this sequence of function converges to a function f



(x) which is 0 when x is equal to 0, and which is 1 when x is strictly greater than 0 and

less than or equal to 1.

So, this sequence of functions in the example converges point wise to a function f (x);
and, the limit function, look at the limit function, it is a discontinuous function. So, and
also, if you look at each function, each f n (x) in the sequence; each, f n (x), is a
continuous function on the interval 0, 1; and, this sequence of function converges to a
function f (x), the limiting function is not a continuous function, which has a

discontinuity at 0.

So, one thing we observe that even if we have a sequence of continuous functions which
converges to a function f (x) point wise, is not necessary that the limit function f (x) will
be continuous on the given interval. But, in the existence unique sequence theorem, we
want to have a situation where, the limit function also must be continuous. So, what are,
what is a guarantee, or what makes it sure or ensure, that if you have a sequence of
continuous functions, and that converges to a function of x, what is the guarantee that the

limit function is also continuous?

That is the stronger requirement that is ensured, if we assume with some different kind of
convergence rather than point wise convergence. So, point wise convergence does not
guarantee that the limit function is continuous even if each individual function in the
sequence itself is continuous. So, we, to guarantee that the limit function is also
continuous, we need a strongness of convergence which is known as a uniform
convergence. So, we now introduce what we call as uniform convergence of sequence of

functions.
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So, uniform convergence of sequence of functions. So, let us recast the pointwise
convergence once again in a different a way of putting. So, definition, we say definition
2 bar, which is another way of defining the point wise convergence; point wise
convergence we have already defined. Let, f n, be a sequence of real functions, each of
which is defined on an interval called a, b. Now, the sequence of function, f n, is said to
converge point wise to a function f on a, b, if given epsilon is greater than 0, for each x in

the interval a, b, there exists a positive number called it N.

Now, this N is going to depend on epsilon and also on x, for each x, and for a given
epsilon, if there exists a positive number n, that depends upon both epsilon and X, such
that the absolute value of f n (x) minus f (x) is less than epsilon, for all n greater than this
n; this n is basically that depends upon epsilon and x. So, observe that interval of the
number n, depends not only on epsilon, it also depends on the point x.

So, for a given epsilon and for the given the numbers n epsilon will be different from
different point x. And, if you can find a single n which is available for all x in the
interval a, b, then we say that the convergence is uniform convergence. So, uniform
convergence is a case where for a given epsilon greater than 0, there exists a positive
number n, that number n will work for all x in the interval a, b, then the point wise

convergence turn to be a uniform convergence. So, defined right as a definition.
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So, call it definition 3, let, f n, be a sequence of real functions, each of which is defined
on a given interval a, b. Then, the sequence, f n, is said to be, or is said to converge
uniformly to a function f on a, b, if, given epsilon greater than 0, there exists a positive
number N. And, now, in this case N depends only on epsilon, such that the absolute
value of f n (x) minus f (x) is less than epsilon, for all n greater than this N, and for every

X in the interval a, b.

So, here the N, that positive number N depends only on epsilon, not on x. So, that is true
for all x in the interval, a, b. So, geometrically, what does it mean? See, geometrically, so
this means that, so given epsilon greater than 0, the graphs of y is equal to f n (x) for n
greater than N, the graphs of y is equal to f n (x) for n greater than N, lie between the
graphs between the graphs of y is equal to f (x) plus epsilon, and y is equal to f (x) minus
epsilon.
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So, that is, if we have the interval, so, this is the limit function, f (x); then say, this is f (x)
plus epsilon, and this is f (x) minus epsilon, then uniform convergence ensures that for
all n greater than the N, the function f n lies between f (x) plus epsilon and f (x) minus

epsilon; so, n greater than N. So, we did not see an example of uniform convergence.

So, an example; so, this is a third example. So, consider the sequence of functions f n
defined by f n (x) is equal to n x square divided by n x plus 1, where X is between 0 and
1,and nisequal to 1, 2, 3, etcetera. So, obviously, for x is equal to 0, when f (x) is equal
to 0, fn (0) is a 0 sequence, and that converges to 0, n goes to infinity, fn (0) is 0.

So, at x is equal to 0, the given sequence of function converges to 0, point wise. And
also, for x strictly greater than 0 and less than or equal to 1, f n (X) which is given by n x
square by n x plus 1; and we can show it easily by a manipulation n x square by n x plus
1, which is n x square by, n we take common, x plus 1 by n; and this is equal to; so, n
and n get cancelled; and as n goes to infinity, denominator becomes x and the numerator

is X square.

So, X, X square by x, that is x. So, this sequence, this converges to a function f (x) which
is equal to x, on x, if this is true, including 0. So, therefore, it converges point wise to the

function f (x) is equal to x.
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So, graphically we can see that the graph of this functions, for this is 1, this is by is 1,
then f (x) is equal to x, is a limit function. And, you see, that for f 1 looks like a
continuous function f, and f may be f 5. And, as n is becoming larger and larger, it is
crossing towards the function f (x) is equal to x. So, what is the conclusion? The
conclusion is, the sequence f n (x) which is n x square by n x plus 1, this converges to a

function f (x) which is equal to x, on the interval 0, 1.

And, one thing we can observe that this time the limit function is also continuous. The
limit function f (x) which is equal to x on 0, 1, is continuous. And, observe, that each of
the function with the sequence f n (x) is continuous on 0, 1. So, each function in the
sequence is continuous, and this sequence converges to a function f (x) which is also

continuous.

So, this time we brought a better result that the limit of the sequence of continuous
functions is also continuous. And, this happens because the convergence in this situation

is uniform convergence; we will show that the convergence is uniform.
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So, how do we show? So, for a given epsilon greater than 0 we should be able to find an
n which is independent of x, such that f n, the difference between f n (x) and X is less
than epsilon, for all n greater than that N which is independent of x. So, we will show for
this example. So, f n (x) minus f (x), by definition of the sequence, is n X square by n x
plus 1 minus, the limit function is x. Just doing the algebraic manipulation, we see that

this nothing but x upon n x plus 1.

And, what we want is, we want; so, given epsilon greater than 0, we are looking for x
upon n x plus 1, is less than epsilon, for all n greater than a given N, which is
independent of x. So, we are looking for this one, x; a symbol manipulation if we apply
here, this one, this can also be written as x upon epsilon is less than n x plus 1. And, if

you divide throughout by x, then 1 by epsilon is less than n plus 1 by x.

So, in other words, 1 by epsilon minus 1 by x, is less than n; or if n is greater than 1 by
epsilon, minus 1 by x; and 1 by x, that there you can have a bound that n is greater than 1
by epsilon, so, x varies in the interval 0, 1. So, the greatest value it can assume is 1; so, 1
by epsilon minus 1. So, therefore, it is obvious that this difference f n (x) minus f (x)
which is x by n x plus 1, and which is less than epsilon, for all n strictly greater than N

that N is 1 by epsilon minus 1.

So, this n is independent of the point x. So, that is true, this n will work for all x. So,
hence, the convergence is uniform. And, we have a uniform convergence of sequence of

functions, and it converges to f. And also, we got an additional property that the limit



function is also continuous when each individual function, the sequence is continuous.

So, we state an important theorem in this regard, when we have uniform convergence.
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So, theorem, called theorem 1. Let, f n, be a sequence of functions which converges
uniformly to a function f (x) on an interval a, b. And, suppose that each function f n (x) is
continuous on a, b. So, this sequence converges uniformly to a function f (x) on a, b; and,
we assume that, each function f n is continuous on a, b, then the conclusion is then the

limit function f (x). So, limit function f is continuous on a, b.

So, this is an inversing result, that guaranties that if a sequence of function converges to
a function, and each of the function the sequence is continuous then the limit function is
also continuous, provided the converge is uniform. So, therefore, the sequence of
continuous functions converging uniformly to a function f, then the function limit
function is f itself is continuous. In the existence and uniqueness theorem, we will also

use the idea of interchange of limit and integration of sequences of functions.



(Refer Slide Time: 49:35)

W

A0Ew P14 39 Erre - FF7 0" B/ MENEEERES BONEENEY

Iw‘rdc‘oham of \imix' and e ot of Sequenct o %«nc’\im.

a sanbuena of -@wc\i«ms Aekined an Tab]

oYewm L ¢ Lﬂt ’E'V:S ‘OL
u % a X(u‘oé\\'cw%g— on Cqm’ﬂ'

wntlervly, B
F\ssw«.*‘m* gghchw(zew w\ (]

g Cotinudu o0 Tab)-

2ash u‘ﬂ!-;\‘\"” "Ji'n
5‘*{3‘:&%** 'Q’ KMA%M%& qﬁo(éﬁé_la
Vet Y,} P P
oy [Reoin = (i eode o (i
A

','.-“" nAod 1 ol
j: —/\%}

¥

So, we now see a result, that deals with interchange of unique and integration. So,
interchange of limit and integration of sequence of functions. So, we state a theorem with
a proof. Proof can be seen in any one of the standard text on real answers or calculus. So,
theorem, call it theorem 2.

So, let, f n, be a sequence of functions defined on some interval a, b. So, assume that, f n,
converges uniformly to a function f on a, b. So, f n is the sequence of functions on a, b,
and that converges uniformly to a function f on a, b. Also, suppose, that each function f n
is continuous on a, b, then the conclusion is, so then for every alpha and beta, such that a

is less than or equal to alpha, strictly less than beta, less than or equal to b.

Limit n goes to infinity, integral alpha to beta, f n (x) d x is equal to, limit integral alpha
to beta, you can take the limit inside, n goes to infinity, f n (x) d X, which is nothing but
integral alpha to beta, f (x) d x. So, what does it say? If you have a sequence of functions
that converges uniformly, and each of the function in the sequence is continuous, then
you can interchange the limit and the integrations. So, you can take the limit inside the
integral, and, which is same as, you know taking the limit of integral or integrating the
limit of the function.



(Refer Slide Time: 53:51)

B T TSRS 5
Ve Pd (D Crore - [T 72~ ENNEEEES EOEEEEEW

W.. Grsider o % e cﬁ;’}mc%h $

(? 5 = nn Oé*é\ ) nal 4y,
Nl

\km %y\“’) = —%m}: % oz £\

({‘ - % wed -Qnm\a,

il
,4,, ns Y o
3 = 243 : \ \

\im Hhhﬁx 2 & o 0 AL = gjﬂ)o\u >gmc\1 -4

\
= | 9
Y A a— Ny
HN | % S’g(‘&)‘h ‘:\M S’_ Mm%‘_’x ninxed

et

Z\ L Hs |
{75 N 0 ‘
i = \im &7‘ - +-qn (‘nx{-\]’x Y‘J. =1 .\@’"1

=) &

P ——— i
So, we will see 1 example in this regard; so, example 4. So, consider a sequence of
functions which we have already considered. So, f n (x) which is equal to n x square by n
x plus 1, in the interval x is less than or equal to 1, greater than or equal to 0, n is equal to
1, 2, 3, etcetera. So, we have already seen that this sequence of functions converge

uniformly to a function, limit function f (x) is equal to x.

So, limit n goes to infinity, f n (x) is equal to f (x) which is x, we have seen from the
previous example, for x between 0 and 1. And, this convergence is uniform convergence.
So, f n converges to f uniformly, and also f n is continuous for n is equal to 1, 2, on the
intervals 0, 1. Now, let us see what will be the value of the limit? So, limit n goes to
infinity, integral 0 to 1, f n (x) d x which is equal to, theorem says that, this can be the
limit can be taken inside. So, limit be, integral 0 to 1, limit f n (x) d x, which is integral 0
to 1, the limit is f x d x, that limit is f (x) is X; so, which is 1 by 2.

Now, if we take the LHS, so, if we take the left hand side and treated separately, so, LHS
we take the limit n goes to infinity, integrals 0 to 1, f n (x) d x which is limit n goes to
infinity, integral 0 to 1, n x square by n x plus 1 d x, which is equal to, limit n goes to
infinity, integrals O to 1, if you do simple algebraic, suppose if you divide this
polynomial by the denominator, this can be shown that this is nothing but, x minus, 1 by

nplus, 1 by nintonxplus1d x.

So, this is equal to, if you do the integrations, so, limit n goes to infinity. So, if we
integrate it, it is x square by 2 minus, integral of 1 by n is x by n, and integral of 1 by n



into n x plus 1 is natural logarithm of n x plus 1 divided by n square. And, if you
evaluate the integral at 0 and 1, you get this is equal to, limit n goes to infinity, 1 by 2
minus, 1 by ninto | n of n plus 1, divided by n square, this plus. And now, if you take the
limit, that limit happens to be, so, this is equal to 1 by 2; ensure that this is equal to 1 by
2. So, this limit is equal to half.

(Refer Slide Time: 1:00:04)
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So, the limit, the LHS is, 1 by 2 minus, 1 by n plus, I n of n plus 1 by n square, which is
half. So, the RHS is equal to, LHS is equal to RHS. So, therefore, this we, this verifies at,
as limit n goes to infinity, integral 0 to 1, f n (x) d x is equal to, integral O to 1, limit n
goes to infinity, f n (x) d x, which is of course, is going to integral 0 to 1 f (x) d x. So,

conclusion of the theorem, the conclusion is then the theorem is verified.

So, in this lecture, what we have seen is, 1 say, sequence of functions are given; there are
2 types of convergences we discussed, one is a point wise convergence, and other one is
the uniform convergence. The advantage of uniform convergence is that it preserves the
continuity of the terms of the sequence to the limit function, if each of f n is continuous,
and f n converges uniformly to f, then the limit function f itself is continuous on the

given interval a, b.



