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Recall in the previous class, we were discussing two important theorems. One is 

Poincare Bendixon theorem and another one is Leinards theorem. So, both give 

sufficient conditions for the existence of the periodic orbits in 2D. Let me stress that 

again, these are very 2D specific theorems. And this is applicable for 2D systems of first 

order equations and this one second order equation, x double dot plus f x x dot plus g x 

equal to 0 under certain conditions on f and g which we stated in the previous class. 

So, Leinards theorem proves that there exists unique periodic orbit surrounding. The 

only equilibrium points 0, 0 and all other non-trivial orbits. So, here the trivial orbit is 

only the equilibrium solution. All other non-trivial orbits tend to this periodic orbit as t 

tends to infinity. So, that is important conclusion of this Leinards theorem.  

Today, we will discuss another class of equations, where the phase plane analysis can be 

done somewhat easily. And we obtain a complete phase portrait of 2D systems and these 

are termed as conservative equations. We will shortly see why this name conservative 



equations and these are again second order equations of the part x double dot plus d by d 

x of V x equal to 0. So, this function V is assumed to be smooth. 
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The function V is called the potential function. The terminology again comes from 

classical mechanics. So, consider this quantity. So, if x is a solution of that conservative 

second order equation. Consider this quantity x dot t square plus V x of the, and using, so 

if. So, let me call this as E t, E of t. So, x t is a solution of that equation. So, this 

represents kinetic energy and this represents potential energy. So, this is the total energy 

at time t, total energy of the particle. 

 So, if we differentiate this E with respect to t. We get is x dot t x double dot t plus using 

chain rule. So, we have this d y by d x V of x t times x dot and now, x dot is common 

and if, we look at the other terms x double dot t plus d by d x of V x of t and that is 0 by 

the equation. So, what we are see by this simple calculation that total energy is 

conserved. So, it is the same per all t. So, therefore, E t is identically equal to E a 

constant for all t. So, this is the region why that second order equation is called a 

conservative equation. 



(Refer Slide Time: 07:07) 

 

So, and the position x t and velocity x dot t, these are called as phases of the particle. 

Again, terminology comes from mechanics. So, we will do analysis involving phases that 

is phase plane analysis. And when you describe the position and velocity for all time and 

that is described as phase portrait. So, that is phase plane analysis, these are the 

terminology coming from this. This plane because there is only position and velocity. 

 So, its two dimensional phase plane analysis, phase portrait, refer to this analysis and 

description of all the orbits. And that is what we are going to do for some simple 

examples. So, again the key equation is the following. So, this is the key equation, this 

half x dot t square plus V of x of t is equal to E and this is remember a constant, and this, 

in this term is always non-negative. 

This V has to be less than or equal to E, so for different levels of this will see, how this 

phase portrait will change. And so once, we are given this potential function and this 

different energy levels E. You take and that will restrict the values of x, and then you use 

this key equation to analyze the behavior of x t and x dot t. That is the position and 

velocity of the particle. So, we will explain with through simple examples. How this, we 

done examples, the first example is pendulum equation. 
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So, we are not adding any force. So, this is unforced and there is no damping. So, this is 

un-damped. So, this is the equation x double dot plus k sin x is equal to 0. So, k is some 

fixed constant, k is a positive constant. So, this can be written as a conservative equation 

so by. So, take there are many choices and I will explain by this particular choice. So, 

this you take V x is equal to k into 1 minus.  

So, you can always add a constant to the potential function without changing the 

equation. And that constant can be added in such way to achieve some simplification for 

the potential function. So, here you see that since it is 1 minus Cos x. So, I added this 

constant. Otherwise it is just minus k Cos x. I, we can also take that 1. I have added k 

here just to make this potential function non-negative for all x. 

 So, then the equation becomes x double dot plus d by d x of V x equal to 0 and 

therefore, the key equation in this situation is. So, half x dot t square plus V x is equal to 

constant. So, remember this is constant and our V is given by this. So, remember this 

equation. So, just what we are going to do now. So, let me draw this potential function as 

a function of x and let us see how it looks like. 
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So, this is the function V of x, V of x is given here. So, this is remember, this is V of x 

and the graph of V of x suggest that, we take these different energy levels E equal to 0, 

and then E between 0 and 2 k, and then E equal to 2 k. And, then finally, E bigger than 2 

k. This graph itself suggests and so let us take one by one. So, just observe carefully. So, 

let us take with E equal to 0. E equal to 0, you know that again the key equation. 

You remember that half of x dot t square plus V of x t equal to E and now, we are taking 

the E equal to 0, and so, and V will be 0, only at this points. These are all even multiplies 

of pi and x dot will be 0, because of that conservative key equation. So, here we obtain 

all equilibrium points. 2 n pi 0 an n integer. So, all even multiples of pi, we obtained at 

this energy level, important to remember that E equal to 0, we are taking now. So, x dot 

is 0 there and we obtain these equilibrium points of the system. 

So, what about 0 next level, the next level 0 E less than 2 k and if you see observe the 

graph of E. The values of x will be restricted to these portions. So, these are symmetrical 

intervals around each of this equilibrium points. 2 n pi 0. They are around that and now x 

value is restricted only to that interval. So, you can explicitly calculate what this point is, 

that is not difficult we can. So, it is strictly in the interval here minus pi pi and similarly 

it will be in different intervals. 

So, since all are have similar structure. So, let us concentrate around this interval g get 0. 

The equilibrium point 0 and corresponding to that value of x. We obtain periodic orbits 



which are exhibited here and arrow is this. So, we obtain the periodic orbits, when 0 E 

less than 2 k. So, obtain. So, let me write here periodic orbits around each 2 n pi 0 around 

each equilibrium point 2 n pi 0. So, here I have just shown it around 0, 0 is same thing 

happens at all other points. 

And next, when you go to this energy level E equal to 2 k, that is the next level and here, 

we do not have any restriction on x. Just to the point that, see now, in this case first, we 

obtain the equilibrium points 2 n plus 1 pi 0. So, n is again an integer, which we did not 

obtain in the energy level 0. Now, with energy level E equal to 2 k we obtain all this. 

These are the equilibrium points, odd multiplies of 2 pi. And now, if we start an orbit at a 

point different from this the equilibrium points and this is what we get. So, this is the, 

and this just this is the one. 

Actually, there are two orbits, both approaching two different equilibrium points. The 

upper one is as t increases the arrow is mark like that and the bottom one like this 

because in the upper portion and x dot is positive. So, x is increasing and in the bottom 

orbit x dot is negative. So, it is approaching it going to minus pi as t tends to infinity. So, 

we obtain addition to this thing. We obtain two orbits and together they are referred to as 

so, here high-lighted it. 

So, Homoclinic is not there. Let me, it is a separaterix. As it is going separate two kinds 

of orbits and the final one, E bigger than 2 k and there is absolutely no restrictions on the 

values of x and from the key equations. You also see that, in this case, E bigger than 2 k. 

Let me write that, you also see that from the key equation. x dot t square is always bigger 

than or equal to, there is half. Let me write that half E minus 2k and now, E is bigger 

than 2 k. So, this is always positive. So, the x dot t is always bounded away from 0. So, 

either it is always positive or again always negative. 

So, that is why we get two orbits. So, one here it is since x dot is positive. So, x is going 

that direction and what a one is in this direction. So, In this case, for the un-damped, 

unforced, Pendulum equation. We obtain a complete phase portrait of this orbit; several 

orbits; you see that. So, there are again, let me repeat it, so for there are four energy 

levels, that to be considered in this case. So, E equal to 0, we obtain all equilibrium 

points, which are even multiples of pi and 0. And for the energy level 0 less than E less 

than 2 k. 



We obtain periodic orbits around each of the equilibrium points 2 n pi 0 and for E equal 

to 2 k. We obtain the equilibrium points, which are odd multiples of pi and we are in 

addition to that, we also obtain two orbits and there are around each this importance. So, 

the same pictures happen at all other points. So, that is important, it is not just restricted 

to this zeros, the same thing you repeat it to other parts, other 2 n multiples of, even 

multiplies of pi and E bigger than 2 k. We obtain unbounded solutions and either the 

solution is always increasing are always decreasing and as shown in the picture, second 

example. 
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So, this is again unforced un-damped Duffings equation. So, earlier we have discussed 

about this thing and now, we are taking the un-damped Duffings equation and this is 

again second order equation given by. So, there is x dot term is missing, that is the damp 

one. So, we are taking delta equal to 0. So, here we take looking at the equation. We take 

V x. So, here we are not going to add any constant. So, just to keep it like that is square 

by 2 plus x 4 by 4. So, with this potential function the given equation is written as x dot 

plus d by d x of V x equal to 0. 

So, therefore, we have the key equation again, x dot t square. So, any solution will satisfy 

this equal to, this is a constant, so before deriving the phase portrait. So, let me just spend 

a few minutes on this potential function. So that, the explanation of x portrait will be 

very clear. So, here the V x is minus x square by 2 plus x 4 by 4. So, this is symmetric V 



x, V of x is equal to V of minus x and quickly draw, I am showing this more in the next 

picture. 
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So, this is just V here. So, this is a 0 here, and then if you solve this thing you have two 

more zeros minus root 2 and plus root 2 and this is negative here, 0 here. So, it is 

symmetric varies more, because it is a polynomial, just you can do that yourself. So, this 

minimum occurs. So, this is level minus quarter. So, this occurs at plus 1 and this is 

minus 1 and recall that. In this case, we have 0, 0 plus or minus 1, 0 are the equilibrium 

points and you may recall the linear analysis. We have done at the test to understand the 

behavior of orbits very clearly, this we have already done it. 

So, this 0, 0 is always unstable and plus or minus 1, 0 in this un-damped case. They are 

stable, but not assume to decrease table. So, we can recall that thing and the graph of V 

suggest that the energy levels. We are to consider E is equal to minus quarter, and then 

we have x minus quarter less than E less than 0, and then we have E equal to 0 and E is 

bigger than. So, let me just for a reference. So, this is the, E equal to 0 levels and this one 

in any varying between. So, there are many. So, this is minus quarter less than E less 

than 0, and then will have this x axis is also energy level 0 and the last one. 

So, anything above E bigger than 0; so again in the like in the Pendulum case, we also 

have four energy levels and at E equal to 0, you only get. So, let me again see it here. So, 

this level, we obtain only equilibrium solutions, equilibrium points, plus or minus 1, 0 



and when energy level is between minus quarter and 0, the values of x is restricted to this 

portion is called potential bell. Again physics language so around each of this 

equilibrium parts. So, they are around this plus or minus 1, 0 and again, we obtain 

periodic solutions around that, and then at energy level 0. 

 We do obtain this equilibrium point 0, 0, and then when we start the orbits at it different 

point. We do obtain again separatrix and when E is bigger than 0. Again, you see this 

value of x is restricted to this interval. This interval and that level is restricted to that. So, 

again, we obtain periodic solutions and these are shown in the next picture. So, that, that 

is what I am going to show you. So, just remember this diagram is more elaborately done 

here. 
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So, what we saw in the previous picture same thing is done here and see at energy level 

E equal to minus quarter. We obtain only the equilibrium point, plus or minus 1, 0, and 

then when the energy level is between minus quarter and 0. We obtain this periodic 

orbits, I am just showing one around each of this equilibrium point plus or minus 1, 0. 

So, this is minus 1, 0 and that is, this is minus 1, 0 and that is plus 1, 0 and when energy 

level is exactly 0 apart from this equilibrium point 0, 0. 

We do obtain the orbits one on the right side and another one. So, this is single orbit. Let 

me just explain that, it is not periodic orbit that, you should keep in mind because, this is 

an equilibrium point. So, another one and the nature of these orbits clearly indicate that 



the origin is unstable and when again E is greater than 0 as I said. So, it is restricted to x 

is restricted to this interval and we obtain this red color one. It is going in this direction. 

So, that is the periodic orbit. So, we have in the case of un-damped unforced Duffings 

Equation. 

We do have again several different cases of orbits at one energy level. We get only the 

equilibrium points. Then, we get the periodic orbits then we get separatrix, and then 

again periodic orbits. So, in the, in the previous example, in the final thing, we got only 

unbounded solutions, but here at all levels, we get only periodic orbits. So, that is the big 

difference. So, let me just make few remarks about this duffings equation again. So, 

again here; so, let me just concentrate on this level energy level 0. So, we obtain. So, let 

me write that thing lets go to the next one. 
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So, Duffings Equation again, so Duffings Equation, let me just call with a remark about 

that. So, we have again half x dot t square plus. This let me write this x square by 2 plus 

everything has t x square t by 4 equal to 0. So, energy level 0, E is equal to 0. I am 

considering that particular energy level 1 to make a remark and that so first. We obtain 

the equilibrium point 0, 0. So, this just let me draw that. So, this is 0, 0. So, if you start 

the orbit at a different point, then this one then we got. So, this let me draw that so, for 

example, if I take x dot positive. 



So, we obtain this. So, this will go up to that root 2 root 2 0 and similarly, we obtain the 

other one. Here, they are supposed to be symmetric of this given and the remark. I want 

to make is following. So, these are; so, these orbits suppose it is start here. So, it will 

make an entire round here and come back to the. It can come here only at infinity and 

you can see that as t goes to minus k. It also goes to 0. So, this is equilibrium point. So, I 

remember that and similarly, here if an orbits starts here. 

Its starts here it goes all the way around and again. Eventually, goes to 0 as t goes to 

infinity and here also it goes to 0 as t goes to minus infinity. So, let me just draw this. So, 

both these orbits have the special property. So, these orbit. So, let me now, write these 

two orbits tend to the equilibrium point 0, 0 both as t tends to infinity and t tends to 

minus infinity. 

So, this is very special here and such orbits are called. When an orbit tends to an 

equilibrium point both as t goes to infinity, as well as t goes to minus infinity. See in the 

previous case that does not happen. You can just see that in Pendulum case that does not 

happen as t goes to infinity. It goes to one equilibrium point and t goes to minus infinity, 

t goes to another equilibrium point. It does not go to the same equilibrium point and such 

orbits are called Homoclinic orbits. 

In this case, the Duffings Equation exhibits the existence of there are two Homoclinic 

orbits and they corresponding to energy level 0 and again when you e positive. So, this, 

these are also now act as separatrix. So, these orbits separate a two kind of periodic 

orbits one inside this. So, we have here several, we saw that thing there are several 

periodic orbits here. And here around and above that, we have this another periodic 

orbits.  

So, let me use different color. So, this is you saw that right. So, this corresponds to E 

positive and this, these two orbits correspond to minus quarter less than E less than 0. So, 

for every E there we have a periodic orbit. So, that is fine. So, they are not difficult but, 

you have to just work out patiently in order to see the phase portrait of the orbits. So, 

with that thing, we come to end of this discussion on Qualitative Theory of Differential 

Equations.  

So, before ending let me make few comments. So, this Qualitative Theory of Differential 

Equations is an very important and quite deep subject. What we have done in the last few 



lectures we had. We have been able to scratch this surface of this worst and important 

subject. So, if you understand this properly, you will be able to read more advanced 

topics and there are excellent text books providing that material. So, that we have 

included in the references. So, you will be able to understand much more advance topics, 

once you grasp this elementary knowledge. 

Thank you. 


