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Basic Lemma and Uniqueness Theorem 

  

Welcome back to the lectures on existence and uniqueness of solutions of initial values 

problems. We have discussed about the Lipschitz continuity of a function of two 

variables, and also we proved in the last lecture the Gronwall’s lemma which will be 

used in proving the uniqueness of solution of an initial value problem. 
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Let us recall the Gronwall’s inequality which we did yesterday. The Gronwall’s 

inequality recall Gronwall’s inequality or Gronwall’s lemma. So, let f x and g x be two 

real valued function defined on some interval a, b such that both f x and g x are non-

negative on the interval a, b. Then the inequality f x is less than or equal to c plus integral 

a to x f t g t d t with a constant k k times, where c and k are positive constants implies, 

then this inequality implies f x is less than or equal to c times e to the power integral a to 

x k g t d t for x in the interval a, b. 

So, this inequality says if whenever we have an inequality, f x is less than or equal to c 

plus integral a to b k times f t g t that implies that f x is less than or equal to c times this 

constant c times exponential of the integral a to x that into g t d t. The advantage of this 



inequality is that in the first inequality f x is coming on both sides, and the second 

inequality gives a bound for the function f, the right hand side is independent of f. And a 

special case of this Gronwall’s equality, we will use improving the uniqueness theorem.  

So, that I state as a corollary; let f x be a real valued and non-negative continuous 

function defined on a, b. In the Gronwall’s inequality also we require f x and g x be two 

real valued continuous function, then also continuity is required for giving a meaning to 

the integral. So, here in the corollary let f x be a real valued and non-negative continuous 

function defined on a, b and k be constant. Then the inequality f x is less than or equal to 

integral a to x k times. So, k times f t d t implies f x is equal to 0 on the interval a to b. 

So, this is a special case of Gronwall’s inequality where the constant c is 0 and d t or d x 

is 1, but c we assume to be a strictly positive strictly greater than 0 and that can be 

tackled. 
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Can we see a proof of it, proof of corollary. Let epsilon greater than 0 be a given 

number; let epsilon be an arbitrary number given. Now consider the inequality f x is less 

than or equal to epsilon plus integral a to x k times f t d t. Now f x is a continuous non-

negative function and k is only given case a positive constant k positive constant, and 

epsilon is strictly positive. Now by apply Gronwall’s inequality on this. So, by applying 

Gronwall’s lemma with some Gronwall’s lemma is f x is whenever f x is less than equal 



to c plus integral a to x k into f t g t d t, we have the inequality f x is less than or equal to 

c times expansion of the integral a to x k into g t d t. 

So, if you apply this Gronwall’s inequality here with g x is equal to 1 and c is epsilon 

which is of course greater than 0. Then we get f of x is less than or equal to c times; c is 

epsilon times e to the power integral k times integral a to x k times, g is 1. So, this is k 

into d t which is equal to epsilon e to the power if you integrate x minus k times x minus 

a. So, therefore, this implies that this non-negative function f x is less than or equal to 

epsilon times e to the power k and x varies from a to b. 

So, the upper boundary is b minus a. So, e to power b minus a is a finite quantity, and 

this is true for all epsilon any given epsilon. So, since epsilon is arbitrary and f x is 

greater than or equal to 0, we have f x is identically zero. So, this quantity is a finite 

quantity and this is true for all epsilon and f is non-negative. So, it implies that f x is 

equal to literally zero. So, this form of Gronwall’s lemma we will apply in the 

uniqueness result. 
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Okay, let us come to the uniqueness result. So, consider the initial value problem. So, d y 

by d x is equal to f of x comma y with the given initial condition y at x 0 is y 0. So, this 

is initial value problem, and we will prove that if f is Lipschitz continuous with respect to 

x, then the solution of this initial value problem is unique. So, by making use of the 

Lipschitz types Lipschitz continuity condition, we will prove that the uniqueness of the 



result and also we will invoke they are Gronwall’s lemma. So, tools. So, Lipschitz 

condition Lipschitz continuity of f with respect to y and Gronwall’s lemma. So, we also 

invoke a basic lemma for the initial value problem. 
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Let me state and prove a basic lemma for the initial value problem. If y x is a solution of 

the initial value problem d y by d x is equal to f of x y and y at x 0 is y 0, then y satisfies 

the following Volterra integral equation. Volterra integral equation is given by y of x is 

equal to y 0 plus integral x 0 to x f of t y of t d t. So, this is the integral equation. We 

denote this by I e and the initial value problem is I v p. So, the basic lemma is, say, y is a 

solution of the initial value problem, then satisfies the Volterra integral equation y x is 

equal to y 0 plus integral x 0 to x f of t y t d t. 

And conversely, if y is a solution of the integral equation I e and y belongs to the cos of 

own continuously differential function if and all some intervals x 0 x 1 with x 1 as some 

number greater than x 0. So, we use the solution of the integral equation which is 

continuously differentiable on the interval x 0, x 1, then y satisfies the initial value 

problem means y is also a solution of the initial value problem. 

So, one way we are converting the problem of solution of the differential equation into 

the problem of the solution of an integral equation. And this integral equation I e, the 

solution of the integral equation can be treated separately the solution of an integral 



equation a naught b is differentiable. In case it is differentiable, we can show that it is a 

solution of the initial value problem. 
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So, the proof of this basic lemma; so what we have is the differential equation d y by d x 

is equal to f of x y. Now integrating with respect to x over an interval x 0 to x we get. So, 

integral x 0 to x d y d x x is equal to integral x 0 to x f of we change the variable to t, and 

y is also a function of x y of t d t. And this is y at x minus y at x 0 is equal to integral x 0 

to x f of t y t d t, and we know that the initial condition y at x 0 is y 0. So, therefore, I am 

pushing this to the right hand side y f x is equal to y 0 plus integral x 0 to x f of t y of t d 

t. 

So, this is the integral equation Volterra integral equation. So, therefore, if y is a solution 

to the initial value problem, then y satisfies the integral equation. Now we will prove the 

other way. Suppose that y is the solution of this integral equation or y satisfies this 

integral equation and y is also continuously differentiable then we can. So, suppose y is 

in c 1 x 0 x x 1 and y satisfies I e, then differentiating with respect to x we obtained. So, 

d y by d x is equal to derivative of y 0 is 0 plus d by d x of integral x 0 to x f of t y of t d t 

using the Leibniz’s rule for differentiating an integral. So, we get this turns out to be f of 

x y of x. So, that derivative of this integral is f of x y of x. 
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So, therefore, we get d y by d x is equal to f of x y of x. So, therefore, the function 

satisfies the differential equation and it is very easy to verify that y at x 0 for the integral 

equation. See in this integral equation if you look at the integral equation and if you 

substitute if you replace x by x 0, then this is integral x 0 to x 0, okay, that vanishes and 

y at x 0 is y 0. So, obviously, y at x 0 is y 0. So, this implies that y satisfies the initial 

value problem. 

Now as I pointed out a remark. So, one can study solutions of the integral equation 

without differentiability assumptions on y but only with continuity assumptions on y. So, 

such solutions are unknown as mild solutions or weak solutions of the initial value 

problem. So, if we do not require the differentiability condition on y, then the solutions 

of the Volterra integral equation just defined are known as mild solutions or weak 

solutions.  
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Now we are ready to prove the uniqueness result, so theorem. We now state and prove 

the uniqueness theorem for the initial value problem. Suppose that f of x y is continuous 

and Lipschitz continuous with respect to y on a rectangle r which is in r 2, where r is 

defined as r is a rectangle set of all x, y such that x minus x 0 is less than or equal to a, y 

minus y 0 is less than or equal to b for some constants a and b positive. 

So, we assume that suppose f is a continuous and Lipschitz continuous with respect to y 

on a rectangle r and the rectangle is defined this way with Lipschitz constant alpha, then 

the initial value problem d y by d x is equal to f of x y y at x 0 is y 0, then the solution of 

the initial value problem is unique. If it has solution then the solution is unique, 

continuity is assumed with respect to both x and y, because of the continuity there exist a 

solution. And here our major emphasis is on the uniqueness and since f is Lipschitz 

continuous with respect to y, we are going to prove that the solution is going to be 

unique. So, if solution exists, then the solution is unique; it cannot have more than one 

solution if f is Lipschitz continuous with respect to y. We will prove it. 
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Proof, we invoke the Gronwall’s lemma. So, let assume that it has got two solutions; let 

y of x and z of x be two solutions that y and z be two solutions of the initial value 

problem and on some interval x 0, x 1. So, thus by the basic lemma, basic lemma says 

any solution that is satisfying the initial value problem will also satisfy the integral 

equation. 

So, basic lemma says a solution satisfying the initial value problem will also satisfies the 

integral equation. So, therefore, we are using the basic lemma. So, thus by basic lemma y 

x is equal to y 0 plus integral x 0 to x f of t y of t d t, and similarly z is a solution. So, z x 

is equal to y 0 plus integral x 0 to x f of t z t d t is also a solution. Now subtracting one 

from the other one; so subtracting we get y x minus z x is equal to y 0 on y 0 get 

cancelled and the integration lemma of integration is common, so integral x 0 to x f of t y 

t minus f of t z t d t. 

Now if we take the absolute value y of x minus z of x is less than or equal to integral x 0 

to x, absolute value f of t y t minus f of t z t d t. Now we have assumed that if is 

Lipschitz continuous with respect to the second argument y. So, f is Lipschitz continuous 

with respect to the second argument. So, therefore, we can use a Lipschitz condition or 

Lipschitz continuity. So, this is less than or equal to. So, by Lipschitz continuous alpha 

times integral x 0 to x y of t minus z of t d t; this is by Lipschitz continuity of f. 



So, now you have an inequality that absolute value of y x minus z x is less than or equal 

to alpha times integral x 0 to x, absolute value of y t minus z t d t. So, now if we use a 

corollary of Gronwall’s lemma, see the corollary of Gronwall’s lemma if you have a 

situation like this if f x is less than or equal to integral a to x. So, if f x is less than or 

equal to integral a to s k f t d t then f x has to be 0; here the conditions on f is f is non-

negative, continuous, and k is a positive constant. So, if the conclusion is f t is equal to 

zero. So, if we come to our inequality. 
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So, now by using Gronwall’s, we have we obtained that absolute value of y of x minus z 

of x is less than or equal to integral x 0 to x, alpha times y of t minus z of t d t. So, 

applying Gronwall’s inequality Gronwall’s lemma with, so Gronwall’s lemma we use a 

corollary with f of x is absolute value of y of x minus z of x and k is equal to alpha and g 

x the corollary is 1 and c is 0. So, we get f of x is literally 0. So, that is y x minus z x is 

equal to 0 for x in the interval x 0 to x 1. 

So, the conclusion is. So, this implies that. So, we started with two solutions y and z and 

we have come to a conclusion that the difference between these two solutions for all x is 

0. So, there is y of x is equal to z of x proving the uniqueness of the solution. So, the 

solution is unique. Now we will consider a few examples. 
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So, example call it example one, d y by d x is equal to y plus exponential 2 x with initial 

condition y at 0 is 2. So, look at this simple initial value problem. See, note that it is a 

linear differential equation and non-homogeneous. So, linear and non-homogeneous 

differential equation and this equation is first order. So, sufficient theory has already 

been developed and you have seen how to solve this equation by using the method using 

the integrating factor techniques and all. So, let us analyze the existence of solution 

uniqueness of solution. Okay, here the function f of x, y in the right hand side of this 

equation is y plus e to the power 2 x, and this is continuous. 

So, with respect to x and y; it is linear in y and it is an exponential function; in x it is a 

continuous function in the all r 2. So, f is continuous, and what about the Lipschitz 

continuity? So, f of x y 1 minus f of x y 2 which is equal to y 1 minus y 2; so it is linear. 

So, therefore, it is Lipschitz continuous, here the Lipschitz constant alpha is 1. So, it 

satisfies all the conditions of the uniqueness theorem. So, the function is continuous in x 

and y and the function is Lipschitz continuous with respect to y with the Lipschitz 

constant y. So, therefore, y is the uniqueness theorem. 

So, by the uniqueness theorem I v p this initial value problem has a unique solution. This 

linear problem has a unique solution; remember that not all linear problems linear initial 

value problems are having unique solutions. We have seen example, and further, we will 

see examples. And by using the integrating factor and the method which we have already 



seen, we have seen that a solution of this equation is given by y x is equal to e to the 

power x by applying the initial conditions e to the power x plus e to the power 2 x is the 

only solution. This solution is found by using the method we studied earlier and by the 

uniqueness theorem this is the only solution. 
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And now let us consider another example, so example 2. So, let us consider a non-linear 

initial value problem. So, consider a non-linear initial value problem given by d y by d x 

is equal to x into sin y, where this function is defined on for x on a domain; domain is 

defined by set of whole x, y where x is bounded by 2 and y is free. So, y varies from 

minus infinity to plus infinity and x is bounded by 2. So, let the initial condition be y at 0 

is 1; we will analyze the existence and uniqueness. 

So, first let us write down the function, the right hand side function f of x y is x into sin y 

is continuous only, and you check whether this function is Lipschitz continuous with 

respect to the second argument y. To check the Lipschitz continuity of f with respect to 

y, we have stated and proved a sufficient condition. If the partial derivative of f with 

respect to y is bounded in the given domain, then the function is Lipschitz continuous 

with respect to y in that domain. 

So, the partial derivative, so del f by d y is equal to x cos y and if you take the bound, say 

you take the supremum of this one for all x y in d. So, this is hence maximum is enough. 

So, maximum is attained. So, x y in d; so this is equal to cos y is bounded by 1 and x is 



bounded by 2. So, the supremum is 2. So, therefore, this implies that x sin y is Lipschitz 

continuous on d with respect to y with Lipschitz constant alpha is equal to 2. So, 

therefore, this function satisfies all the conditions of the uniqueness result. So, f satisfies 

conditions of uniqueness theorem. 

So, this therefore, the conclusion is. So, d y by d x is equal to x sin y with y at 0 is 1 has 

a unique solution starting from the given point of 0, 1. But the existence part as I have 

already mentioned if the function is continuous with respect to x and y, then existence is 

guaranteed in some interval starting from the given initial point 0, 1. And now what we 

have proved or observed is the uniqueness is guaranteed because of the Lipschitz 

continuity property of f with respect to y. Now we will see an example where we have 

more than one solution. 
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That example we have already seen a linear equation. So, I will take an example, so 

example three. So, consider the initial value problem; of course, this is a linear one d y 

by d x is equal to 2 by x into y, and the initial condition y at 0 is 0. So, in our earlier 

sessions we have obtained its general solution and also its solution satisfying the initial 

condition. So, note that y is equal to c into x square is a solution for the initial value 

problem for every value of c. 

So, therefore, we have seen that it has got infinite linear solution. Let us just check why 

or how we compare this with the uniqueness result. So, in this case f of x y is 2 by x into 



y on an interval, say, 0 to some number, say, 0 to 2; 0 is a point given and del f by del y, 

obviously, it exists is 2 by x, but if we take the supremum of del f by del y when x and y 

are here; it depends only on x when x is in the interval, say 0, 1 which is sup. 

So, this does not exist; we know that this blows up. So, therefore, the function f is not 

Lipschitz continuous with respect to y; see at x is equal to 0, you see the singularity is, 

therefore, this differential equation as x goes to 0 2 up on x blows up. So, if is not 

Lipschitz continuous with respect to y; so therefore, there is no surprise why this 

equation does not have a unique solution. So, the uniqueness theorem does not apply 

here. And we have several other examples which we dealt with. 
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One example which can be done as an exercise, so example four; so consider the initial 

value problem d y by d x is equal to 3 y’s upon 2 by 3; the initial condition y at 0 is 0. 

We have seen the earlier lecture that this differential equation has got infinitely many 

solutions including y x is equal to x cube. So, it has got many solutions, and in this case 

also if we look at the function f of x, y is equal to 3 y 2 by 3. So, it is a continuous with 

respect to both the arguments, but it is not Lipschitz with respect to y on any domain 

containing the point 0 series. So, it is not Lipschitz on any domain containing 0 series. 

So, therefore, the uniqueness is not assured by the uniqueness theorem, okay. So, given a 

differential equation, we can make out whether the equation has a unique solution 

provided the function f is Lipschitz continuous with respect to y; that is one of the 



sufficient conditions. Again remember is not necessary; there can be a function which 

does not satisfy Lipschitz continuity, but still thus it can have a unique solution, and we 

will prove the existence theorem in the coming lectures. So, by various existence 

theorems also we will see, bye.  


