Ordinary Differential Equations
Prof. Raju K George
Department of Mathematics
Indian Institute of Science, Bangalore

Lecture - 17
Basic Lemma and Uniqueness Theorem

Welcome back to the lectures on existence and uniqueness of solutions of initial values
problems. We have discussed about the Lipschitz continuity of a function of two
variables, and also we proved in the last lecture the Gronwall’s lemma which will be

used in proving the uniqueness of solution of an initial value problem.
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Let us recall the Gronwall’s inequality which we did yesterday. The Gronwall’s
inequality recall Gronwall’s inequality or Gronwall’s lemma. So, let f x and g x be two
real valued function defined on some interval a, b such that both f x and g x are non-
negative on the interval a, b. Then the inequality f x is less than or equal to ¢ plus integral
atox ftgtdtwith aconstant k k times, where ¢ and k are positive constants implies,
then this inequality implies f x is less than or equal to c times e to the power integral a to

x k gtdtforxin the interval a, b.

So, this inequality says if whenever we have an inequality, f X is less than or equal to ¢
plus integral a to b k times f t g t that implies that f x is less than or equal to ¢ times this

constant ¢ times exponential of the integral a to x that into g t d t. The advantage of this



inequality is that in the first inequality f x is coming on both sides, and the second
inequality gives a bound for the function f, the right hand side is independent of f. And a

special case of this Gronwall’s equality, we will use improving the uniqueness theorem.

So, that | state as a corollary; let f x be a real valued and non-negative continuous
function defined on a, b. In the Gronwall’s inequality also we require f x and g x be two
real valued continuous function, then also continuity is required for giving a meaning to
the integral. So, here in the corollary let f x be a real valued and non-negative continuous
function defined on a, b and k be constant. Then the inequality f x is less than or equal to

integral a to x k times. So, k times ft d t implies f x is equal to 0 on the interval a to b.

So, this is a special case of Gronwall’s inequality where the constant cis 0 and d t or d x
is 1, but ¢ we assume to be a strictly positive strictly greater than 0 and that can be
tackled.
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Can we see a proof of it, proof of corollary. Let epsilon greater than 0 be a given
number; let epsilon be an arbitrary number given. Now consider the inequality f x is less
than or equal to epsilon plus integral a to x k times ft d t. Now f x is a continuous non-
negative function and k is only given case a positive constant k positive constant, and
epsilon is strictly positive. Now by apply Gronwall’s inequality on this. So, by applying

Gronwall’s lemma with some Gronwall’s lemma is f x is whenever f x is less than equal



to ¢ plus integral ato x k into ft g t d t, we have the inequality f x is less than or equal to

¢ times expansion of the integralato x k intogtdt.

So, if you apply this Gronwall’s inequality here with g x is equal to 1 and c is epsilon
which is of course greater than 0. Then we get f of x is less than or equal to c times; c is
epsilon times e to the power integral k times integral a to x k times, g is 1. So, this is k
into d t which is equal to epsilon e to the power if you integrate X minus k times x minus
a. So, therefore, this implies that this non-negative function f x is less than or equal to
epsilon times e to the power k and x varies from a to b.

So, the upper boundary is b minus a. So, e to power b minus a is a finite quantity, and
this is true for all epsilon any given epsilon. So, since epsilon is arbitrary and f X is
greater than or equal to 0, we have f x is identically zero. So, this quantity is a finite
quantity and this is true for all epsilon and f is non-negative. So, it implies that f x is
equal to literally zero. So, this form of Gronwall’s lemma we will apply in the

uniqueness result.
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Okay, let us come to the uniqueness result. So, consider the initial value problem. So, d y
by d x is equal to f of x comma y with the given initial condition y at x 0 is y 0. So, this
is initial value problem, and we will prove that if f is Lipschitz continuous with respect to
X, then the solution of this initial value problem is unique. So, by making use of the

Lipschitz types Lipschitz continuity condition, we will prove that the uniqueness of the



result and also we will invoke they are Gronwall’s lemma. So, tools. So, Lipschitz
condition Lipschitz continuity of f with respect to y and Gronwall’s lemma. So, we also

invoke a basic lemma for the initial value problem.
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Let me state and prove a basic lemma for the initial value problem. If y x is a solution of
the initial value problem d y by d x is equal to f of x y and y at x 0 is y O, then y satisfies
the following Volterra integral equation. Volterra integral equation is given by y of x is
equal to y O plus integral x 0 to x fof t y of t d t. So, this is the integral equation. We
denote this by I e and the initial value problem is I v p. So, the basic lemma is, say, y is a
solution of the initial value problem, then satisfies the Volterra integral equation y x is

equal to y O plus integral x Otox foftytdt.

And conversely, if y is a solution of the integral equation | e and y belongs to the cos of
own continuously differential function if and all some intervals x 0 x 1 with x 1 as some
number greater than x 0. So, we use the solution of the integral equation which is
continuously differentiable on the interval x 0, x 1, then y satisfies the initial value

problem means y is also a solution of the initial value problem.

So, one way we are converting the problem of solution of the differential equation into
the problem of the solution of an integral equation. And this integral equation | e, the

solution of the integral equation can be treated separately the solution of an integral



equation a naught b is differentiable. In case it is differentiable, we can show that it is a

solution of the initial value problem.
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So, the proof of this basic lemma; so what we have is the differential equation d y by d x
is equal to f of x y. Now integrating with respect to x over an interval x 0 to x we get. So,
integral x 0 to x d y d x x is equal to integral x 0 to x f of we change the variable to t, and
y is also a function of x y of t d t. And this isy at x minus y at x 0 is equal to integral x 0
tox foftytdt, and we know that the initial condition y at x 0 is y 0. So, therefore, | am
pushing this to the right hand side y f x is equal to y O plus integral x 0 tox fofty of td
t.

So, this is the integral equation Volterra integral equation. So, therefore, if y is a solution
to the initial value problem, then y satisfies the integral equation. Now we will prove the
other way. Suppose that y is the solution of this integral equation or y satisfies this
integral equation and y is also continuously differentiable then we can. So, suppose y is
inc1x0xx1andy satisfies | e, then differentiating with respect to x we obtained. So,
dy by d x is equal to derivative of y 0 is 0 plus d by d x of integral x 0 to x foftyoftdt
using the Leibniz’s rule for differentiating an integral. So, we get this turns out to be f of

x y of x. So, that derivative of this integral is f of x y of x.
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So, therefore, we get d y by d x is equal to f of x y of x. So, therefore, the function
satisfies the differential equation and it is very easy to verify that y at x 0 for the integral
equation. See in this integral equation if you look at the integral equation and if you
substitute if you replace x by x 0, then this is integral x 0 to x 0, okay, that vanishes and
y at x 0 is y 0. So, obviously, y at x 0 is y 0. So, this implies that y satisfies the initial

value problem.

Now as | pointed out a remark. So, one can study solutions of the integral equation
without differentiability assumptions on y but only with continuity assumptions on y. So,
such solutions are unknown as mild solutions or weak solutions of the initial value
problem. So, if we do not require the differentiability condition on y, then the solutions
of the Volterra integral equation just defined are known as mild solutions or weak

solutions.
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Now we are ready to prove the uniqueness result, so theorem. We now state and prove
the uniqueness theorem for the initial value problem. Suppose that f of X y is continuous
and Lipschitz continuous with respect to y on a rectangle r which is in r 2, where r is
defined as r is a rectangle set of all x, y such that x minus x 0 is less than or equal to a, y

minus y 0 is less than or equal to b for some constants a and b positive.

So, we assume that suppose f is a continuous and Lipschitz continuous with respect to y
on a rectangle r and the rectangle is defined this way with Lipschitz constant alpha, then
the initial value problem d y by d x is equal to fof x y y at x 0 is y 0, then the solution of
the initial value problem is unique. If it has solution then the solution is unique,
continuity is assumed with respect to both x and y, because of the continuity there exist a
solution. And here our major emphasis is on the uniqueness and since f is Lipschitz
continuous with respect to y, we are going to prove that the solution is going to be
unique. So, if solution exists, then the solution is unique; it cannot have more than one

solution if f is Lipschitz continuous with respect to y. We will prove it.
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Proof, we invoke the Gronwall’s lemma. So, let assume that it has got two solutions; let
y of x and z of x be two solutions that y and z be two solutions of the initial value
problem and on some interval x 0, x 1. So, thus by the basic lemma, basic lemma says
any solution that is satisfying the initial value problem will also satisfy the integral

equation.

So, basic lemma says a solution satisfying the initial value problem will also satisfies the
integral equation. So, therefore, we are using the basic lemma. So, thus by basic lemma 'y
x is equal to y 0 plus integral x 0 to x fof t y of t d t, and similarly z is a solution. So, z x
is equal to y 0 plus integral x 0 to x fof t zt d t is also a solution. Now subtracting one
from the other one; so subtracting we get y X minus z x is equal to y 0 on y 0 get
cancelled and the integration lemma of integration is common, so integral x 0 to x fofty

tminusfoftztdt.

Now if we take the absolute value y of x minus z of x is less than or equal to integral x 0
to x, absolute value f of t y t minus f of t z t d t. Now we have assumed that if is
Lipschitz continuous with respect to the second argument y. So, f is Lipschitz continuous
with respect to the second argument. So, therefore, we can use a Lipschitz condition or
Lipschitz continuity. So, this is less than or equal to. So, by Lipschitz continuous alpha

times integral x 0 to x y of t minus z of t d t; this is by Lipschitz continuity of f.



So, now you have an inequality that absolute value of y x minus z x is less than or equal
to alpha times integral x 0 to x, absolute value of y t minus z t d t. So, now if we use a
corollary of Gronwall’s lemma, see the corollary of Gronwall’s lemma if you have a
situation like this if f x is less than or equal to integral a to x. So, if f x is less than or
equal to integral ato s k ft d t then f x has to be O; here the conditions on f is f is non-
negative, continuous, and k is a positive constant. So, if the conclusion is f t is equal to

zero. So, if we come to our inequality.
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So, now by using Gronwall’s, we have we obtained that absolute value of y of x minus z
of x is less than or equal to integral x O to X, alpha times y of t minus z of t d t. So,
applying Gronwall’s inequality Gronwall’s lemma with, so Gronwall’s lemma we use a
corollary with f of x is absolute value of y of x minus z of x and k is equal to alpha and g
x the corollary is 1 and c is 0. So, we get f of x is literally 0. So, that is y x minus z x is

equal to 0 for x in the interval x 0 to x 1.

So, the conclusion is. So, this implies that. So, we started with two solutions y and z and
we have come to a conclusion that the difference between these two solutions for all x is
0. So, there is y of x is equal to z of x proving the uniqueness of the solution. So, the

solution is unique. Now we will consider a few examples.
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So, example call it example one, d y by d x is equal to y plus exponential 2 x with initial
condition y at 0 is 2. So, look at this simple initial value problem. See, note that it is a
linear differential equation and non-homogeneous. So, linear and non-homogeneous
differential equation and this equation is first order. So, sufficient theory has already
been developed and you have seen how to solve this equation by using the method using
the integrating factor techniques and all. So, let us analyze the existence of solution
uniqueness of solution. Okay, here the function f of x, y in the right hand side of this
equation is y plus e to the power 2 x, and this is continuous.

So, with respect to x and y; it is linear in y and it is an exponential function; in x it is a
continuous function in the all r 2. So, f is continuous, and what about the Lipschitz
continuity? So, f of x y 1 minus f of x y 2 which is equal to y 1 minus y 2; so it is linear.
So, therefore, it is Lipschitz continuous, here the Lipschitz constant alpha is 1. So, it
satisfies all the conditions of the uniqueness theorem. So, the function is continuous in x
and y and the function is Lipschitz continuous with respect to y with the Lipschitz

constant y. So, therefore, y is the uniqueness theorem.

So, by the uniqueness theorem | v p this initial value problem has a unique solution. This
linear problem has a unique solution; remember that not all linear problems linear initial
value problems are having unique solutions. We have seen example, and further, we will

see examples. And by using the integrating factor and the method which we have already



seen, we have seen that a solution of this equation is given by y x is equal to e to the
power X by applying the initial conditions e to the power x plus e to the power 2 X is the
only solution. This solution is found by using the method we studied earlier and by the

uniqueness theorem this is the only solution.
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And now let us consider another example, so example 2. So, let us consider a non-linear
initial value problem. So, consider a non-linear initial value problem given by d y by d x
is equal to x into sin y, where this function is defined on for x on a domain; domain is
defined by set of whole X, y where x is bounded by 2 and y is free. So, y varies from
minus infinity to plus infinity and x is bounded by 2. So, let the initial condition be y at 0

is 1; we will analyze the existence and unigqueness.

So, first let us write down the function, the right hand side function f of x y is x into sin y
is continuous only, and you check whether this function is Lipschitz continuous with
respect to the second argument y. To check the Lipschitz continuity of f with respect to
y, we have stated and proved a sufficient condition. If the partial derivative of f with
respect to y is bounded in the given domain, then the function is Lipschitz continuous

with respect to y in that domain.

So, the partial derivative, so del f by d y is equal to x cos y and if you take the bound, say
you take the supremum of this one for all x y in d. So, this is hence maximum is enough.

So, maximum is attained. So, x y in d; so this is equal to cos y is bounded by 1 and x is



bounded by 2. So, the supremum is 2. So, therefore, this implies that x sin y is Lipschitz
continuous on d with respect to y with Lipschitz constant alpha is equal to 2. So,
therefore, this function satisfies all the conditions of the uniqueness result. So, f satisfies

conditions of uniqueness theorem.

So, this therefore, the conclusion is. So, d y by d x is equal to x sin y with y at 0 is 1 has
a unique solution starting from the given point of 0, 1. But the existence part as | have
already mentioned if the function is continuous with respect to x and y, then existence is
guaranteed in some interval starting from the given initial point 0, 1. And now what we
have proved or observed is the uniqueness is guaranteed because of the Lipschitz
continuity property of f with respect to y. Now we will see an example where we have

more than one solution.
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That example we have already seen a linear equation. So, | will take an example, so
example three. So, consider the initial value problem; of course, this is a linear one d y
by d x is equal to 2 by x into y, and the initial condition y at 0 is 0. So, in our earlier
sessions we have obtained its general solution and also its solution satisfying the initial
condition. So, note that y is equal to ¢ into x square is a solution for the initial value

problem for every value of c.

So, therefore, we have seen that it has got infinite linear solution. Let us just check why

or how we compare this with the uniqueness result. So, in this case f of x y is 2 by x into



y on an interval, say, 0 to some number, say, 0 to 2; 0 is a point given and del f by del y,
obviously, it exists is 2 by x, but if we take the supremum of del f by del y when x and y

are here; it depends only on x when x is in the interval, say 0, 1 which is sup.

So, this does not exist; we know that this blows up. So, therefore, the function f is not
Lipschitz continuous with respect to y; see at X is equal to 0, you see the singularity is,
therefore, this differential equation as x goes to 0 2 up on x blows up. So, if is not
Lipschitz continuous with respect to y; so therefore, there is no surprise why this
equation does not have a unique solution. So, the uniqueness theorem does not apply

here. And we have several other examples which we dealt with.
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One example which can be done as an exercise, so example four; so consider the initial
value problem d y by d x is equal to 3 y’s upon 2 by 3; the initial condition y at 0 is 0.
We have seen the earlier lecture that this differential equation has got infinitely many
solutions including y X is equal to x cube. So, it has got many solutions, and in this case
also if we look at the function f of x, y is equal to 3 y 2 by 3. So, it is a continuous with
respect to both the arguments, but it is not Lipschitz with respect to y on any domain

containing the point O series. So, it is not Lipschitz on any domain containing 0 series.

So, therefore, the uniqueness is not assured by the uniqueness theorem, okay. So, given a
differential equation, we can make out whether the equation has a unique solution

provided the function f is Lipschitz continuous with respect to y; that is one of the



sufficient conditions. Again remember is not necessary; there can be a function which
does not satisfy Lipschitz continuity, but still thus it can have a unique solution, and we
will prove the existence theorem in the coming lectures. So, by various existence

theorems also we will see, bye.



