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We have seen the choice of the basis for the various subspaces that we had considered 

connected with the matrix. We shall now go back to the various fundamental questions 

that we raised in the first two lectures and setting our goal for the course as finding the 

answers to these questions. Now, let us go back to these questions and see whether we 

have found all the answers. 
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The first question that we looked at was suppose, a is an m by n real matrix. And b 

belongs to R m, and we look at the system A x equal to b. So, given b we want to find x 

n R n such that A x equal to b. 
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So, the first question was under what conditions that this possible. So, the question that 

we raised was what are or what is the conditions, if any that b has to satisfy for the 

system A x equal to b to have a solution. 
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And any such condition will be called consistency condition. This is what we called any 

such condition which, guarantees the existence of a solution is called consistency 

condition. So, what we are asking is what is or are the consistency conditions. So, the 

question is what is or are the consistency conditions? Condition or conditions whichever, 



way depending on how many condition we have to satisfy. So, this was the first 

fundamental question that we raised now during the course of our discussions we found 

the answers to these questions by interpreting it in various formats. 
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So, the answer to this question that we found was in many forms. The first form was that 

the rank of the matrix a must be equal to the rank of the augmented matrix, recall that the 

augmented matrix is the matrix obtained from a by appending as a last column the vector 

b. We got this conditions, when using by using elementary row operations this was the 

first way, first time we have got the consistency conditions for the system to have a 

solution. 

Then we looked at them in the view of the transformations. And we observed that, if A x 

equal to b has to have solution b must be of the form A x and such vectors are called 

range vectors. So, the other way is that b belongs to the range of a. So, this was one or 

look at another manner the same thing equivalently, can be stated as b belongs to the 

range of A. 
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Or now we found that the range of A is the orthogonal compliment of the null space of A 

transpose. And therefore, b has to belong to the range of A simply means that b must be 

orthogonal to all the vectors in the null space of A transpose. So, the same can be written 

as b is orthogonal to all vectors in the rate, the null space of A transpose. Now, a vector 

is orthogonal to all the vectors in a subspace, if it is orthogonal to all the basis vectors 

and therefore, this can be stated equivalently as. B is orthogonal to all vectors in a basis 

or in A transpose, or in particular we can state this as by choosing the basis to be an 

ortho normal basis, which should be orthogonal to b psi j equal to 0 where, psi 1 psi 2 psi 

nu A transpose is an ortho normal basis for null space of A transpose. 

So, the answer to the first question what is or what are the consistency conditions? We 

found the answer in many formats all of them are equivalent and finally, we boil down to 

the format phi, which told us how to analyze these spaces. 
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Then having found the consistency conditions, then the first thing that we would do is 

given any b we shall ask does b satisfy the consistency conditions, that was our next 

question and we said we could get the answers to this in two forms either yes or no. 

Either b may satisfy the consistency conditions or not, if b satisfies the orthogonality to 

all the basis vectors then it satisfies the conditions, if it fails to be orthogonal to even one 

basis vector then it fails to satisfy the consistency conditions. 
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Now, in this case solution exists solution to system, A x equal to b exist then we ask the 

question how many we now know that we found the answer that either unique or 

infinitely many then we ask the ask the question when is it unique. And now we have the 

answer that when the rank of the matrix is equal to n the number of columns then 

solution is unique then finally, we ask the question in that case what is the solution? And 

now we know the answer the solution is given by our representation that we got ex or x, 

x is equal to summation j equal to rho 1 s j b u j V j, where u j V j s j are as we have 

found out the singular values the basis for the range of A transpose etcetera. 

So, we have the answers for all the questions that we ask in this case the case where we 

have unique solution then similarly, we ask whether it is infinitely many when is it 

infinitely many. And uniqueness we got when rho equal to n. So, it should be the other 

case the rho cannot be greater than n. So, this can happen when rho is less than n then 

solution is then infinite number of solutions.  

Then we asked what are all the solutions? And now we know the answer that they are all 

given by x equal to summation j equal to 1 to rho, 1 by s j b u j V j plus summation alpha 

k phi k, equal to 1 to nu a where alpha 1 alpha 2 alpha k arbitrary. Then we ask for 

unique representative solution is there anything like that and we found that that is given 

by x optimal, which is summation j equal to 1 to rho 1 by s j b u j V j. So, thus we have 

all the answers to all the questions in the case, b satisfies the consistency conditions. The 

next case that we have to deal with is what happens when the consistency conditions are? 

Not satisfied then we found. 

So, we ask the question what can we do? First of all we get statement that there will be 

no solutions. So, first let is note that now there is no solution there is no solution. So, we 

said that if, there is no solution what can we do then? We observed that we can find least 

square solutions, which are very close to b and minimize the error we can get close to b 

as possible. And solution, which gives you the minimum error is called a least square 

solution. Then we, ask if we can find least square solution how many? Again we have 

the same situation as before either unique or infinitely many then we ask when is it 

unique. 

Now, we know the answer that we get the unique least square solution when the rank is 

equal to n. So, when rank is equal to n least square solution is unique. And then once you 



know that you are in the case (( )) solution and that least square solution is unique we ask 

what is the least square solution? And we know the answers from our analysis that is 

given by x L equal to summation j equal to 1 to rho 1 by s j b u j V j. So, now we have 

all the answers in the case when we does not satisfy the consistency condition and we 

have unique solution the next. So, we have this situation covered the next series of 

questions that we raise where in the case of infinitely many solutions when. 
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So, the question therefore, is when do we get infinitely many solutions. Then we know 

that when rho equal to n we get unique the other two cases are rho greater than n, and rho 

lesser than n, but the rho cannot be greater than n as we said before. So, we get when rho 

is less than n we get infinitely many least square solutions what are all the solutions? 

What are all these? Least square solutions that was the next question, that we asked. 

Now, we know how to get all these solutions they are given by x equal to summation j 

equal to 1 to rho 1 by s j b u j V j plus summation, k equal to 1 to nu a alpha k phi k 

where alpha 1 alpha 2 alpha k arbitrary. 

So, then we ask what about a unique representative? And we had the answer we had x L 

optimal the least square solution optimal, which is given by j equal to 1 to rho 1 by s j b 

u j V j. So, thus we have the answers to the entire series of questions that we raised about 

a linear system of equations. We have the consistency situation the non consistency 

situation, consistency unique situation, consistency non unique, inconsistent unique least 



square, inconsistent infinitely least square in both the cases consistent and inconsistent 

when we have infinite solution, we have a corresponding optimal solution. And thus we 

have. 
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Therefore finally, our answer in all these cases, we call the answer we got this one this 

one we call this as X sol in all these cases, the final version of the solution the best 

possible solution, that you can get for the system a x equal to b when I say best possible I 

mean it is either a solution. And, if you cannot find a solution, least square solution and, 

if there are many solutions it has the least length. So, least error solution is called x. So, 

and we have X sol is equal to as dagger b where A dagger was the matrix summation j 

equal to rho 1 by s j V j u j transpose and this we call as pseudo in.  

You call the pseudo inverse of the matrix this was the first set of basic questions, that we 

raised about a matrix A it is about the non homogenous system of equations consistency 

conditions, about the existence of solutions uniqueness of solutions. 

When it is non existence what can we do? And whenever we do that approximation will 

it be unique infinitely many. And what is the most representative solution? So, we have 

the answer for all these questions and we put them all in a single package. Whatever case 

you are in just compute, A dagger b and that will be your final answer whichever of the 

four cases, we discussed in all these cases the final answer is going to be A dagger b 

where A dagger is this. Of course the summation will depend on what the rank is, if rho 



equal to n A dagger will have n terms if rho is less than n A dagger will have less than 

terms, that was as I said the first series of questions. 
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Then we raised a second series of questions. Now, that we have seen that during the 

course we have found that answers to all the questions, in the first series of questions the 

second series of questions, since that we raised were the following. This involved the 

change of variables for example, We had A x equal to b. 
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We said we shall introduce change of variables, where we call x as some P y b as some P 

c, where P is n by m invertible matrix we want invertible, because from the x variable to 

y variable and x variable to y variable you must be able to translate that problem. Then A 

x equal to b becomes A P y equal to p c. And therefore, p inverse A P y becomes c. So, if 

we can make P inverse A P as diagonal then we get a diagonal system and we can easily 

solve it. 
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So, the question was that we raised was under what conditions, can we find a invertible 

under n by n matrix P such that P inverse A P is a diagonal matrix then this lead us this 

leads us to the Eigen problems, we found this is connected with the notion of Eigen 

values and Eigen vectors. 
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So, what was the answer that we got? So, we first said we introduce a notion of 

characteristic polynomial. So, the answer characteristic polynomial of a, which is defined 

as C A lambda equal to the determinant of lambda I minus A must factor out as lambda 

minus lambda 1 into a 1, lambda minus lambda 1 to the power of a 2 lambda minus 

lambda k to the power a k, Where lambda 1 lambda 2 lambda k are real and distinct we 

call that we are asking for a matrix since, we are having real we always think of real 

matrix p lambda 1 lambda 2 lambda k we are seeking as real and distinct. 

This k this distinct lambda 1 lambda 2 lambda k. And a 1 a 2 a k are integers greater than 

or equal to 1 such that a 1 plus a 2 plus a k equal to. So, the first requirement is that the 

characteristic polynomial of a factors out like this then, we call lambda 1 lambda 2 

lambda k as the distinct Eigen values of the matrix a and a 1 a 2 a k were referred to as 

the algebraic multiplicities of this Eigen values then that was the first condition once that 

is then. So, the conditions that we are asking for under what conditions consists of many 

parts the first part is the characteristic polynomial must factor out as pointed above. 
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Then, if you define W j to be the null space of A minus lambda j I for j equal to 1 2 k 

these we call as the Eigen spaces corresponding to the Eigen value lambda j, if then 

dimension of W j, which we call as the geometric multiplicity this is what is known as? 

Algebraic multiplicity is equal to algebraic multiplicity this must happen for 1 less than j 

less than k or j equal to 1 2 k for every Eigen value the geometric multiplicity must be 

equal to the algebraic multiplicity. These are the two conditions that has to satisfy in 

order that the matrix p exist. 
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So, therefore, given any real p the real A n by n matrix we ask the question does A 

satisfy the above conditions. And again the answers can be yes or no. 
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In the case of yes, we asked therefore, since we satisfied condition there exists a 

invertible real P n by n matrix such that P inverse A P is a diagonal matrix. So, our 

question was under what conditions there exists? A P is a diagonal matrix we have got 

these two conditions. Now, we ask whether matrix a satisfies these two conditions and 

the answer is yes therefore, there must be A P what is that p? What we asked what is 

such A P? And answer s was as follows let u 1 1 u 1 2 etcetera u 1 a 1 be a basis for w 

one. So, in general let u j 1 u j 2 u j a j be a basis for w j. 

See a dimension of by a condition two we said that the condition is satisfied by condition 

two the dimension of W j is a j and therefore, a basis for W j will have a j vectors. Now, 

if the u a j vectors are denoted by a j 1 a j 2 u j a j and this we do for each j then we set, P 

equal to the matrix whose first column is u 1 1 and go on and u 1 a 1 then u 2 one 

etcetera u 2 a 2 etcetera. In other words P is obtained by putting these basis vectors along 

the columns. And p inverse A P will be a diagonal matrix where lambda 1 will occur a 1 

times and so on lambda k will occur a k times. 

So, what is the case? When p satisfies a satisfies the condition for the existence of A P. 

Now, what do you do when? It is a (( )) there are two alternatives we say that one lays to 

the Jordan canonical form, but we looked at another alternative and this we took this 



alternative in this of course,, we did not take the alternative course, which reached to the 

Jordan canonical form. On the contrary we took an alternative which lead to the singular 

value decomposition, because it also allows us to look at a rectangular matrix. So, what 

we did was the following instead of? Remember this question arose, because of the 

requisition for the change of variables, if you look at the change of variables we use the 

same matrix p for changing the variable x as well as changing the variable b. 

Can you not use two different change of variables like x equal to p y and b equal p c or x 

equal to Q y and V is equal to r c some change of variables. So, we asked, if you change 

that then instead of asking p inverse A P to be diagonal we will ask Q inverse A P to be 

diagonal. So, the question is modified as can we cannot, if their conditions are not 

satisfied we cannot get a real n by n invertible matrix P such that, P inverse A P is a 

diagonal matrix. So, what we do? So, we asked can we get two real n by n invertible 

matrices Q and p Q is used to transform the variable b and p will be used to transform the 

variable x such that Q inverse A P is a diagonal matrix and the answer we got was yes. 
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And therefore, what are Q and p? The answer we had was you choose Q to be the matrix 

U, which was u 1 u 2 u rho psi 1 psi 2 u A transpose remember, he u 1 u 2 u rho formed a 

basis for range of A psi 1 psi 1 psi u A transpose formed the basis for, the range of A 

transpose since we are in the square matrix state n equal n. So, rho plus U A transpose be 

n. And therefore, given n by n matrix and not only that this is an orthogonal matrix and 



therefore, and Q inverse is u transpose because u was an orthogonal matrix and we 

choose P to be the matrix V which consists of this V 1 V 2 V rho and then phi 1 phi 2 phi 

nu a. 

This is again an n by n matrix and then we have Q inverse A P is the same as u a V u 

transpose A V. And this we got as the singular value see s 1 s 2 s rho 0 0 0 and this was 

the singular value decomposition this was the SVD. 
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Then we ask the question that? This can be generalized our analysis shows that, this can 

be generalized to rectangular matrices and what will be our Q now Q will be our U, but 

now an m by m matrix and P will be our, which will be an n by n matrix. And U 

transpose A V will be our no longer a diagonal matrix, which have the s rho cross rho 

and the 0 matrix and all other. There will be a leading diagonal block of s rho cross rho, 

which is a diagonal matrix with the singular values along the diagonal. 
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So, s rho cross rho is simply a rho by rho matrix, which has s 1 s 2 s rho or all others are 

0. So, you have just put a diagonal block consisting of s 1 s 2 s rho and then adjust the 

other 0s. So, that you get an n by n matrix. So, this is the general SVD. So, once again 

we have now found the answers to all our questions in the second series about 

diagonalizibility, under what condition is diagonalizable? We got the answer as 

eventually the algebraic multiplicity must be equal to geometric multiplicity before that 

the characteristic polynomial must factor out and so on. 

And when it was satisfied we knew how to find the diagonalising matrix p and when it 

was not satisfied, we can split it in to two transformations, Q and P such that Q inverse A 

P is a diagonal matrix. And the Q and P were found in this format. And then we said that 

this could be also generalized to rectangular matrices. And we can get the general 

singular value decomposition given for rectangular matrix. So, that we have the complete 

set of answers for the entire set of questions in the second series of questions. 
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The third series of questions, that we raised was the following suppose I have a vector V 

in R n. And A vector u in R m both non 0 vectors V u non 0. So, suppose we have two 

non 0 vectors then we define the outer product or the tensor product sometimes called the 

tensor product. We shall define it as follows u tensor to be the matrix V u transpose. So, 

in that case what will we get? We get u is V is n by 1 and u is m by 1. So, we get an n by 

m matrix, if we take V tensor u then it will be u V transpose and this will be m by one 

and this will be one by n. So, we get an m by n matrix. So, if we take a matrix u, which is 

in R m a matrix V in R n and take u V transpose it will be a n by n matrix, then V tensor 

u is a rank 1 matrix we then said we can take such rank one matrices and superpose 

them. 
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So, the next idea we said was if V 1 V 2 V rho are linearly independent vectors in R n. U 

1 u 2 u rho are linearly independent vectors in R m. And then s 1 s 2 s rho are positive 

scalars positive real numbers then, if we superpose all this s j V j tensor u j, which is the 

same as summation j equal to 1 to rho s j u j V j transpose is the sum of rho 1 rank 

matrices is and as rank rho. 
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So, the question that we asked was can we write every m by n real matrix of rank rho as 

the sum of rho 1 ranked matrices? See the construction that, we have here shows that we 



can generate a lot of rho ranked matrices, by putting together these one ranked matrices. 

The question was whether we could take and exhaust all the rho ranked matrices that is 

whether all rho ranked matrices can be generated this way, which means can we write 

every rho ranked n by m matrix as the sum of rho 1 ranked matrices. This is the 

fundamental question of decomposing a rho ranked matrices matrix into rho 1 matrices 

and the answer we got was yes. 
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And the answer precisely the yes the SVD we got the SVD into formats and the sum 

form of the SVD gives such a decomposition, out of the decomposition A equal to 

summation j equal to one to rho s j u j V j transpose, which can also be in our tensor 

notation s j V j tensor u j. So, therefore, we have the answer to the decomposition also. 

So, thus we have answers for all the questions we raised in the first two lectures and set 

them as our goal for this course and since we have now all the answers we have achieved 

our goal. 
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All our goal was achieved the main ingredient for gradients for achieving all these goals 

or all these answers are what? Everywhere the same u j V j will appear the four ortho 

normal basis write then down V 1 V 2 V rho for the range of A transpose phi one phi two 

phi nu a for the null space of A u 1 u 2 u rho for the range of A psi one psi two psi nu A 

transpose for the null space of A transpose and s 1 s 2 together that these four basis, we 

have s 1 s 2 s rho the singular values. So, these are the main ingredients for finding all 

the answers therefore, given a matrix these are the most important things that we have to 

compute with such a matrix. 
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Where do we get all these from where should we look. So, the way to get this let us 

recall was the following, we first construct L equal to A transpose A and then L is 

positive semi definite. 
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And it is Eigen values can be arranged as lambda 1 greater than or equal to lambda 2 

greater than or equal to lambda 2 rho greater than 0, which is equal to the remaining 

Eigen values. When we dealt with positive semi definite Eigen matrices we found that 

their Eigen values can be arranged from this format. And corresponding to this we will 

get the Eigen vectors ortho normal Eigen vectors, which we call as V 1 V 2 V rho and 

these are the Eigen vectors corresponding to the null space. 

And then we define s 1 to the square root of lambda 1 s 2 to be the square root of lambda 

2 s k s rho to be the square root of lambda rho these were the singular values whenever, 

we say root we mean the positive square root. Then we define u j to be a V j divided by s 

j. So, that a V j become s j and we can find that from this we can also get A transpose u j 

is s j V j and. 
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So, we got the u we got the V the phi’s we got the lambda’s and finally, get psi one psi 

two psi nu a basis ortho normal basis for A transpose for null space of A transpose by 

solving A transpose u. X equal to theta m and this can be done by elementary rho 

operations, thus the basic ingredients is therefore, or mainly these u and the V the phi’s 

and the psi can be solved by the homogenous equations using elementary raw operations, 

these are the easiest, but the question is about the V 1 b 2 V rho u 1 u 2 u rho lambda 1 

lambda 2 lambda rho s 1 s 2 s rho can be found the moment you get the lambda 1 lambda 

2 lambda rho. 

But we have seen that we can even get u 1 u 2 u rho the moment we get s rho 1 s 2 s rho 

and V 1 V 2 V rho, because the u can be found from the s v and the given matrix. So, the 

(( )) of the matrices are four is finding lambda 1 lambda 2 lambda rho V 1 V 2 V rho. 

Lambda 1 lambda 2 lambda rho are the positive Eigen values associated with the positive 

semi definite matrix L. And V 1 V 2 V rho are the corresponding ortho normal Eigen 

vectors. So, when we learn computations the main algorithms that would come into the 

picture are the competition of Eigen values and Eigen vectors of positive semi definite 

matrices, these are the most fundamental algorithms in computational linear algebra. 
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So, now we have seen a complete analysis of a real n by n matrix we will just ask a 

passing question what about complex matrices? Complex matrices the analysis will 

always be almost similar only change, that we will have to make is wherever we use 

transpose we simply take transpose conjugate. So, the analysis is similar to the real case, 

the change is needed are the following replace transpose by transpose conjugate. So, 

transpose, if you write it as T transpose conjugate is written as star what do we mean by 

this? 
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For example, the real case and the complex case. The real case we define the inner 

product of two vectors as y transpose x in the complex case, we define the inner product 

of two vectors y transpose conjugate, which is y star x. And then, if you have a matrix a 

we look at the range of A transpose and the null space of A in R n. And the range of A 

and the null space of A transpose in R m. In the complex case we look at range star and 

the null space of A in C n and the range of A and the null space of A star n C m. 
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Then in the complex in the real case, we found that the range of A transpose null space 

of A are orthogonal compliments in R n. And range of A and null space of A transpose 

orthogonal compliments in R m. In the complex case the range of A star and the null 

space of A will be orthogonal compliments in C n and the range of A and the null space 

of A star will be orthogonal compliments in C m. And we would have got u 1 u 2 u rho 

ortho normal basis for range of A transpose v1 v 2 v rho and u 1 u 2 u rho ortho normal 

basis for the null space range of A. 

In this case, we will get v 1 v 2 in the complex case v 1 v 2 v rho ortho normal basis for 

the range of A star and u 1 u 2 u rho ortho normal basis for range of A. And phi 1 phi 2 

phi nu a ortho normal basis for null space here we will get phi 1 phi 2 phi nu a be ortho 

normal basis for null space of A. And psi 1 psi 2 psi nu a be A transpose null space of n 

be A transpose now so, it will be psi nu A transpose will be ortho normal basis for null 

space of A star. 
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Now, where do we get all these things? Again previously consider L in the real case, we 

consider L equal to A transpose A now we consider L equal to A star A. Now, this will 

be positive from this stage onwards it is all same this will be positive definite semi 

definite and this will also be positive semi definite and therefore, computations will 

proceed as before find the Eigen value the Eigen values arranged as lambda 1 lambda 2 

lambda rho correspondingly V 1 V 2 V rho as singular values and so on. 

So, the necessary changes that we have to make in the complex cases are remember we 

have a complex in the complex case, in the beginning itself by defining the inner product 

the geometry of orthogonality the is the conjugation involved. And that conjugation 

reflects right through our computation all the way up to defining L and the basis and then 

we get a positive semi definite matrix. So, all these analysis can be verbatim carried out 

to complex matrix now and everyone of the answers to the analog as to what we got the 

one route, which we not adopted in this course is when the matrix is square matrix and it 

is not diagonalisible. 

What is that we can do? Still getting p inverse A P only not trying to resort to two 

matrices Q and P, but resorting to the same transformation P can be make P inverse e A 

P very close to the diagonal matrix this is the Jordan canonical form theory in the case of 

complex and real matrices. And in the case when this is not possible even you have 

general feel. 



What we can do these are questions for at a your advanced course in linear algebra we 

have to consider a general field and analyze all these problems, but for a fundamental use 

as an engineer most of these things that we have discussed will either appear in solutions 

of system or other optimization problem or in image processing problems or in signal 

processing problems. So, these are the fundamental things that one will have to at least 

minimum compute with respect to a matrix. I hope these points will be referred to 

repeatedly and the basic necessities of these will be understood clearly. 


