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Back To Linear Systems – Part 1 
 

We have seen how to use the choice of our bases we make for the four subspaces 

connected with the matrix A to get the product decomposition and the sum 

decomposition of a matrix. 
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We had A, any real matrix m by n. And then, from that, we constructed the two square 

matrices, which was L – A transpose A, which is an n by n matrix. M – A A transpose, 

which is an m by m matrix and both were positive semi-definite matrices. 
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Now, using these two matrices, we found that the bases for the subspaces can be chosen 

as follows. Recall our decompositions. We had R n and the R m – two fundamental 

vector spaces A takes n component vectors to m components vectors; A transpose takes 

m component vectors to n component vectors. And, we had the decomposition of R n as 

two orthogonal complements of range of A transpose, which was the same as range of L; 

and, the null space of A, which was the same as null space of L. On this side, on the m 

side, we had the two orthogonal complements consisting of the range of A, which was 

the same as the range of M; and, the null space of A transpose, which was the same as 

null space of M. 

These gave rise to a series or a sequence of four orthonormal bases sets: one for the 

range of A transpose; the other for the null space of A; then, the third one for the range 

of A or the range of M; and, the forth one for the null space of A transpose. And, these 

bases we denoted them as V 1, V 2, V rho; we are assuming that the rank of A is rho and 

the nullity is of A is nu A. This is our standard notation. And, we denoted the bases for 

the range of L as v 1, v 2, v rho. The basis for the null space of A as p 1, p 2, p nu A; 

and, the orthonormal basis for the range of A as u 1, u 2, u rho; and, the orthonormal 

basis for the null space of A transpose as psi 1, psi 2, psi nuA transpose. 
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Now, it was the choice of basis that was important. We chose v 1, v 2, v rho – this was 

our choice as the orthonormal eigenvectors corresponding to the strictly positive 

eigenvalues of L arranged as lambda 1 greater than equal to lambda 2 greater than equal 

to lambda rho greater than 0. And, we obtained the phi 1, phi 2, phi nu A as the 

orthonormal eigenvectors corresponding to the 0 eigenvalue of L. 
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We then obtained psi 1, psi 2, psi nu A transpose as the orthonormal eigenvectors 

corresponding to the 0 eigenvalue of M. Now, it was in the choice of u 1, u 2, u rho 



bases, we linked the v basis and the u basis. We chose u 1, u 2, u rho as u j is equal to 1 

by s j times Av j. We know the matrix A; we have chosen the vectors v 1, v 2, v rho; and, 

we construct u j as 1 by s j into Av j; where, s j is square root of lambda j – the positive 

square root of… this is for 1 less than j equal to rho. And, s j’s were called the singular 

values of A. So, this was the choice of our basis and we chose the basis for the range of 

A in a way linking it with the basis for the range of A transpose. And, the linking gave us 

this following relation A v j – the jth vector in the basis for the range of A transpose 

under the transformation A goes to the jth vector for the range of A with the scaling 

factor s j. Similarly, the jth vector in the basis for range of A under the transformation A 

transpose goes to the jth vector in the range of A transpose with the scaling factor sj, the 

scaling factor being the same in both the directions. So, this was our fundamental choice 

of the basis. 
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We used these to get 1 – SVD – the singular value decomposition in the product form. 

What was the product form? We got A as US A V transpose; where, U was the matrix, 

whose columns were the bases for the R m we chose – u rho, psi 1, psi nu A transpose. 

These were the bases for the space R m on the right side. And, these were the 

orthonormal bases we chose. This is an m by m matrix; and, since the columns are 

orthonormal, this becomes orthogonal matrix – orthogonal m by m matrix. Similarly, we 

was chosen, whose columns were the bases for the R m space that we chose. And 

therefore, this is an n cross n matrix and this is also an orthogonal matrix. 
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Then, the SA was essentially a diagonal block consisting of these singular values along 

the diagonals; and, all the rest of them are 0 and of course, it is an m by n matrix. So, all 

the zeroes are adjusted so that we get an m by n matrix. Thus, we got the product 

decomposition of the matrix. We also got the sum SVD as the sum decomposition. This 

was the product decomposition (Refer Slide Time: 08:54). Now, we get the SVD in the 

sum form, where we decompose the matrix A as the sum of rho one-rank matrices. The 

decomposition was A equal to summation j equal to 1 to rho s j v j tensor u j. 

(Refer Slide Time: 09:19) 

 



Where, v j – we use the notation (Refer Slide Time: 09:21) v j tensor u j – it is just the 

matrix u j v j transpose. So, since u j is m by 1, v j is n by 1, v j transpose is 1 by n, this is 

an m by n matrix and it is of rank one. And therefore, we have A as the sum of rho one-

rank matrices. So, these were the decompositions we obtained in the last lectures using 

this particular choice of our basis. So, that is our important construction. The most 

important construction in all these is choosing (Refer Slide Time: 10:04) these right 

bases for these four subspaces. 
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Now, how do we use these four bases for analyzing our system of equation? So, the use 

of these 4 orthonormal bases to analyze the system Ax equal to b. So, what is… Let us 

denote the system by 1. So, the problem is A is given – the matrix; it is a real m by n 

matrix. So, for given b in R m, we want to find… That is our problem. This is given; we 

want to find x in R n such that Ax equal to b; that is, 1 is satisfied. This is the problem of 

the system of equation. The matrix A is R m n. For any given b, which is in R m, we 

have to find an x in R m, such that A x is equal to b. 

Let us see how we use these bases for answering questions regarding such a system. 

Now, we start with the quantity given. The given quantity is b; we must use the given 

information. The given information is matrix A and the vector b. Using these given 

information, we have to construct that unknown vector x in such a way that ax is equal to 

b. So, how do we do this? 
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Let us start with the given information. So, the given b is in R m. And, for R m, we had 

chosen the bases u 1, u 2, u rho, psi 1, psi 2, psi nu A transpose, is an orthonormal basis 

for R m. Now, b is in R m. We have a basis for R m. Any vector in the space R m, now, 

can be expanded in terms of this orthonormal basis. So, we can expand b in terms of this 

orthonormal basis as b – first, let us look at the components in terms of the u vector – so, 

b comma u j into u j. Because we have an orthonormal basis, the component along u j 

direction will be precisely the inner product of b with u j plus the components along the 

side directions – r equal to 1 to nu A transpose b psi r psi r. 

(Refer Slide Time: 13:45) 

 



We shall denote this vector by b r and this vector by b n. Now, b r belongs to the range of 

A, because it is the linear combination of the vector u 1, u 2, u rho. The vectors u 1, u 2, 

u rho are all in the range of A. The range of A is a subspace. Any linear combinations of 

the vectors in the range of A will be again in the range of A. Similarly, b n belongs to the 

null space of A transpose. And, these are the projections. 

(Refer Slide Time: 14:32) 

 

b r is the orthogonal projection of b onto range of A. And similarly, b n is the orthogonal 

projection of b onto the null space of A transpose. So, it (( )) down to something – it is 

like this. We have the R m. In R m, we have the null space of A transpose and the range 

of A; b is some vector. And, it has been orthogonally projected into these two subspaces 

– this projection is b r and this projection is b n. So, b has been projected orthogonally 

onto R a onto N A transpose. And, the Pythagoras theorem tells us that the length of b 

square is the same as length of b r square plus length of b n square. 
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The first achievement that we have therefore is b has this expansion j equal to 1 into rho 

b, u j u j plus summation r equal to 1 to nu A transpose b, psi r psi r. Let us call this 

equation as star. So, we have the expansion of b. We know this b; our job is to find x. 

Where do we want to find x? We want to find x in R n. 
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Now, for R n, we have orthonormal basis, which is v 1, v 2, v rho, phi 1, phi 2, phi nu A. 

And therefore, if you are looking for a vector in R n as our solution, we are looking for 

our solution as a vector x in R n. So, if it is going to be living in R n, it must be a linear 



combination of these basis vectors. So, the x we are looking for must be a linear 

combination of these basis vectors. Hence, x must be of the form x is equal to say j equal 

to 1 to rho alpha j v j. This takes care of the linear combination of the v’s; r equal to 1 to 

nu A beta r phi r. So, the x that we are looking for must be of this form. So, the moment 

we know alpha 1, alpha 2, alpha rho, beta 1, beta 2, beta nu A, the vector x is known. So, 

the vector (Refer Slide Time: 18:09) x is known. The moment we know these numbers – 

alpha 1, alpha 2, alpha rho, beta 1, beta 2, beta nu A. So, our job is to find these numbers. 

We have to find these numbers, these scalars in such a way that Ax is equal to b. So, if x 

is this, what is A x? We have the representation for (Refer Slide Time: 19:02) x. It must 

be of this form. 
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Therefore, Ax is of the form Ax equal to A of (( )) – any x that we are looking for is of 

this form is a linear combination of the basis vectors. Now, if we apply A, matrix 

multiplication is distributive. So, we have summation j equal to 1 to rho; alpha j’s are 

scalars into Av j plus summation r equal to 1 to nu r beta r into A phi r. Now, what is this 

equal to? We have our choice of basis, was such that A v j – the v j basis went to the u j 

direction with the scaling factor s j. So, A v j was s j u j. So, the first sum becomes 

summation j equal to 1 to rho s j v j. In the second sum, the phi 1, phi 2, phi nu A; that is, 

all the phi r’s are in the null space of A. So, A times this phi r will be the 0 vector. So, 

the second term will contribute only the 0 vector and hence, we get A x equal to alpha j s 

j u j. 
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Therefore, we have b expansion; we had expanded b as summation j equal to 1 to rho b, 

u j u j plus summation r equal to 1 to nu A transpose b, psi j, psi j. This is the first 

expansion we got looking at the known quantity. And now, we have Ax is equal to 

summation j equal to 1 to rho alpha j s j u j. Now, our problem is, we have to find x such 

that Ax equal to b. Therefore, we have the Ax, we have the b. 
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Therefore, we need summation j equal to 1 to rho alpha j s j u j must be equal to the b, 

which is j equal to 1 to rho b, u j u j plus summation r equal to 1 to nu A transpose b, psi 



r psi r. Now, we can write this as summation j equal to 1 to rho – we will take all the u j 

terms on one side – alpha j s j minus b, u j – this whole quantity into u j. On the right-

hand side, we keep all the psi j terms. Now, the left-hand side denotes the quantities, 

which are linear combinations of u j. Now, the vectors u j are all in the range of A. If you 

look at the picture that we drew, the u 1, u 2, u rho were bases for the range of A. So, any 

linear combination of u 1, u 2, u rho will also be in the range of A. So, this is in the range 

of A, because u 1, u 2, u rho is an orthonormal basis for range of A. 

Similarly, this is in the (Refer Slide Time: 23:02) null space of A transpose, because psi 

1, psi nu A transpose is an orthonormal basis for null space of A transpose. Now, the 

left-hand side is the vector in the range of A and the right-hand side is the vector in the 

null space of A transpose. But, the range of A and the null space of A transpose are 

orthogonal to each other. And therefore, the only vector common to them is the zero 

vector. And hence, both sides must be 0. See we have this range of A perpendicular to 

the null space of A transpose. So, this equal vector, which is common to both of them 

must only be the zero vector, because the only vector common to orthogonal 

complement is the zero vector. 
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This implies the first – the right-hand side must be equal to 0 or this should be r; r must 

be equal to 0. And, summation j equal to 1 to rho alpha j s j minus b, u j – this whole 

thing u j must be equal to theta m; not 0, but the zero vector. Now, the given vector V is 



arbitrarily chosen from R m and therefore, the system demands, if you want to have a 

solution, if you want to have A x equal to b, you must have chosen b in such a way that 

the first sum is 0. Let us call this as 1 and 2. 

(Refer Slide Time: 25:02) 

 

Now, first of all, 1 tells that we can get A x equal to b only if b satisfies summation r 

equal to 1 to nu A transpose b, psi r psi r equal to theta m. Now, psi r’s are orthogonal 

vectors; they are linearly independent. And therefore, they are only called linear 

combination that will give zero vector is b, psi r, must all be equal to 0; 1 less than or 

equal to r less than or equal to nu A transpose. Therefore, the system Ax equal to b will 

have a solution only if b psi r is equal to 0. This means that the components of b along 

the null space of A transpose directions are all 0; or, the orthogonal projection of b on to 

N A transpose is 0. And hence, that is only if b belongs to the range of A, which is 

natural, because we want Ax equal to b. So, b better be in the range of A. This fact that it 

belongs to range of A is stated in many ways – b must be range of A; b must therefore be 

perpendicular to the null space of A transpose; and therefore, it must be perpendicular to 

any basis in particular to any orthonormal basis; and therefore, in particular to the 

orthonormal basis that we have chosen. This we will call as the consistency condition. 
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Consistency condition – various ways of stating is: b must be belongs to range of A – 

one; or, same as b must be perpendicular – orthogonal to all the vectors in null space of 

A transpose, which we can also create as b must be perpendicular to any basis in N A 

transpose; that is, all the vectors in any basis must be perpendicular; or the same as… 

The same fact is now b if perpendicular to the particular choice that we have got, b, psi r 

equal to 0 for 1 less than or equal to r less than or equal to nu A transpose. This is our 

particular choice and we want this to be equal to 0. So, the consistency condition. If this 

is not satisfied, then we cannot get Ax equal to b, because for Ax equal to b, if at all it 

has to be satisfied, we need both these to be satisfied. So, the first one demands that b 

belongs to the range of A, which is stated as b psi r is equal to 0. 
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Now, suppose b may or may not. So, let us consider the easiest case first. Suppose b 

satisfies the above consistency condition. Let us go about what we have done. We had 

the known vector b; we could expand the known vector b in terms of the basis for the 

range of M as this (Refer Slide Time: 29:21) expansion. Then, we could expand the 

vector x in terms of the known basis and we got this representation; and, using that, we 

found that A x must be of this form (Refer Slide Time: 29:37). And therefore, using that 

Ax must be of this form and b is of the above form, we wanted Ax equal to b. And, that 

Ax equal to b requirement tells us that we need to have these two conditions: 1 (Refer 

Slide Time: 29:54) and 2. And, the first condition gave us the consistency criterion that b 

must belong to this. 

Suppose b satisfies this consistency condition, then out of these two statements (Refer 

Slide Time: 30:07) we had, one has been taken care of. Now, we have to worry about 2. 

So, then, 2 gives us (Refer Slide Time: 30:18) summation j equal to 1 to rho alpha j s j 

minus b, u j – this whole quantity into u j is the zero vector. 
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Now, u 1, u 2, u rho are orthonormal. And therefore, we have seen that any orthonormal 

set is linearly independent – and hence, linearly independent. And, here is a linear 

combination of the linearly independent vector 0. And therefore, the coefficients must be 

equal to 0 for 1 less than or equal to j less than or equal to rho. This means that alpha j 

must be equal to b, u j by s j. So, this says how to choose… Remember we were trying to 

find x. Finding an x means we must find alpha 1, alpha 2, alpha rho, beta 1, beta 2, beta 

rho. 

Now, all the analyses say that you have to choose the alphas such that alpha j is equal to 

b, u j by s j. And, this does not say anything about beta j. Whatever beta j’s you choose, 

they are not going to affect your solution, because when we computed the A u j – if you 

remember, when you calculated the A u x, the beta j’s came completely disappeared, 

because A phi was 0. So, whatever beta’s we choose, that is not going to affect the 

system. And hence, beta’s can be chosen in any way we want. And thus, we have… 

Alpha’s have to be chosen as we have here (Refer Slide Time: 32:24) – alpha j’s are 

beta, u j by s j; and, beta r can be chosen arbitrarily. 
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Therefore, the solution x must be of the form x is equal to summation j equal to 1 to rho 

alpha j must be equal to – b, u j by s j into v j plus beta R can be chosen any way you 

want – summation r is equal to 1 to nu A beta r phi r; where, beta 1, beta 2, beta nu A can 

be chosen arbitrarily in R. Thus, we have the solution. The moment b satisfies the 

consistency condition, we have the solution and we know that any solution must be of 

this form. So, any solution is of this form. 

(Refer Slide Time: 33:51) 

 



Now, let us therefore summarize. Therefore, summarizing we get – when b belonging to 

R m satisfies the consistency condition b, psi r equal to 0 for 1 less than or equal to r less 

than or equal to nu A transpose – consistency condition. 
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Then, Ax equal to b has a solution and any solution must be of the form x equal to 

summation j equal to 1 to rho b, u j by s j into v j plus summation r equal to 1 to nu A 

beta r phi r; where, the beta r belongs to R, 1 less than or equal to r less than or equal to 

nu A can be chosen arbitrarily. So, when b satisfies the consistency condition, we have 

the solution and any solution must be of this form. Now, where does the arbitrariness 

into the solution come? The solutions are arbitrary in nature in the sense the beta 1, beta 

2, beta nu A can be chosen arbitrarily. Now, if the nu A is 0, then rho will be N and the 

second part will completely disappear. And therefore, the arbitrariness will be 

disappeared. 
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So, the arbitrariness in the solution is due to the b 1, b 2, b nu A. Hence, if nu A is 0, that 

is, if rank plus nullity is n – if nu A is 0; that means if rank is n, then there is no 

arbitrariness, because there are no beta’s there now; there is no arbitrariness. 

(Refer Slide Time: 37:08) 

 

And, we have unique solution given by x is equal to summation j equal to 1 to rho; where 

now, rho is equal to n. We are taking the case rho equal to n. b, u j by s j into v j. This is 

the unique solution. If nu A – if the nullity of A is not equal to 0, then rho is less than n 

and we have infinite number of solutions, because beta 1, beta 2, beta nu A can be 



chosen arbitrarily. So, in this case, when we are having rho is less than n, we have 

infinite number of solutions. When rho was equal to n, we have unique solution; when 

rho is less than n, we have infinite number of solutions. Now, all these infinite solutions 

are of the form x is equal to summation j equal to 1 to rho b, u j by s j into v j plus 

summation r equal to 1 to nu A beta r phi r, because now the betas can be chosen 

arbitrarily. 

Now, if you look at this (Refer Slide Time: 38:50) part, these are all linear combinations 

of the vectors v 1, v 2, v rho. The vectors v 1, v 2, v rho form an orthonormal basis for 

the range of A transpose. And therefore, any linear combination will also be in the range 

of A transpose. So, that is the vector in the range of A transpose. And, the second sum is 

a linear combination of the vectors phi 1, phi 2, phi nu A. Phi 1, phi 2, phi nu A form an 

orthonormal basis for the null space of A. And therefore, any linear combination of them 

will belong to the null space of A. We will call this as x r and this as x n (Refer Slide 

Time: 39:37). 
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So, x r is the summation j equal to 1 to rho b, u j by s j into v j. This belongs to the range 

of A transpose. x n is summation r equal to 1 to nu A beta r phi r, which belongs to the 

null space of A. And, by Pythagoras theorem again, since the range of A transpose and 

the null space of A are orthogonal complements of each other, we get by the Pythagoras 

theorem, the length of x square is equal to the length of x r square plus the length of x n 



square. And therefore, if you look at the right-hand side, we find that the length of the 

solution will be minimum when x n is equal to 0; that is, when we choose all the betas to 

be zeroes. 
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Hence, the solution with the least length is obtained when x n is equal to 0, 0 vector; that 

is, when all beta 1 equal to beta nu A equal to 0. So, this solution is called the optimal 

solution. And, we will denote it by x optimal and that is given by j equal to 1 to rho b, u j 

by s j v j; where now, rho is less than n. So, what is the conclusion? 
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Let us again summarize. If you now summarize this whole process, we have – if b 

satisfies the consistency conditions… These are the consistency conditions. If b satisfies 

these consistency conditions, then A x equal to b; the system A x equal to… Of course, b 

is in R m. If b satisfies this consistent… A is a matrix, which is an R m n. Let us write all 

the notations in the summarization. If b satisfies the consistency condition; where the 

psi’s, phi’s, u’s and v’s are the same as we have in the figures that we have been 

drawing, the corresponding orthonormal basis – when b satisfies this consistency 

condition, the system has a solution. 
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One – the solution is unique if the rank of the matrix is equal to the number of columns 

and the unique solution is given by x is equal to summation j equal to 1 to rho – rho is 

same as n – b, u j by s j v j. If rho is less than n, then there are infinite number of 

solutions and they are all of the form (Refer Slide Time: 44:25) x is equal to summation j 

equal to 1 to rho b, u j by s j v j plus summation r equal to 1 to nu A beta r phi r; beta r 

can be chosen any way we want r. 
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And, among these solutions, the solution having least length is called the optimal 

solution. And, is denoted by x optimal and we have x optimal is equal to summation j 

equal to 1 to rho – now, less than n b, u j by s j into v j. 

In the case when rho equal to n, there (Refer Slide Time: 45:50) is only one solution. 

Therefore, that is also the optimal solution. There is only one person; he is the lowest as 

well as the highest. So, among all the solutions, there is only one solution, and therefore, 

he is also the optimal solution. But, when rho is less than (Refer Slide Time: 46:06) n, 

there is this possibility that the infinite number of solutions can be found. Now, among 

these infinite solutions, which are all of this form, this gives us the (Refer Slide Time: 

46:18) structure of all the solutions. Among all these solutions, there is the solution 

which has the least length and that is called the optimal solution. And, that optimal 

solution has this structure. So, if b… 

We know what is the consistency condition in terms of the basis that we have chosen; 

and, we have also seen so far that these consistency conditions are satisfied; we know 

that the solution exists; and, we know when the solution is unique. This is the case (Refer 

Slide Time: 46:46) when the solution is unique. And, we know exactly how the unique 

solution looks like. This is the case (Refer Slide Time: 47:06) when rho is less than n. 

When rho is less than n, we have infinite number of solutions and we know how all these 

solutions look like; and then, from that, we know how to generate a representative 



solution namely, the solution with the least length or the optimal solution. All these are 

obtained in the terms of the bases we have chosen. 

Now, if we look at the unique solution that we (Refer Slide Time: 47:37) got, all we have 

done is we have taken the jth component of b and scaled it down by a factor of 1 by s j 

and took that as the j th component of x. So, basically therefore, as we observed, A takes 

the jth basis vector on R n to the jth basis vector R m with a upward scaling factor of s j. 

So, when we want to find the solution, we are pulling back things. So, we are pulling 

back the jth component of b to the jth component of x. But, now, scaling down the factor, 

because the scaling up by A has been undone by the scaling down of s j. 

Similarly, even in the optimal solution case, we are looking at only that part of b, which 

belongs to the range of A and then we are pulling back again the components with the 

scaling factor. Basically, therefore, we are saying that since A has the fundamental effect 

of scaling up by s j while going from range of A to the range of A transpose, we have to 

do the scaling down while coming back to find the solutions. Thus, in the case of the b 

satisfying the consistency condition, we have all the answers; we know when the 

solution is unique; we know when it is unique what is the structure of the solution; and, 

we know when the solution is infinite; and, if it is infinite number of solutions, we know 

the structure of all the solutions; and, we also know how to choose a unique 

representative among these infinite solutions, is the optimal solution. 

(Refer Slide Time: 49:43) 

 



Thus, we have a complete analysis of the system A x equal to b in terms of the bases we 

have chosen in the case when b satisfies the consistency conditions. 

(Refer Slide Time: 50:31) 

 

Now, therefore, we next look at the case when b belonged R m does not satisfy the 

consistency condition. 

(Refer Slide Time: 51:08) 

 

Now, what does it mean to say that b does not satisfy consistency condition? First, let us 

analyze that. What it means is the following. b satisfies means b satisfies the consistency 

condition c means b belongs to range of A. We put in many forms: b belongs to range of 



A; or, b is orthogonal to all the vectors in the null space of A transpose; or, b is 

orthogonal to the psi j vectors and so on and so forth. All of them mean the same thing; 

that means b belongs to range of A. But, if b does not satisfy c means b does not belong 

to range of A. Therefore, we have the following situation. 
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We have the R m side and we have the range of A; we have the null space of A 

transpose. So, the b is somewhere here falling outside the range of A; b does not belong 

to range of A. What does that mean? We have R n; A takes the vectors R n to R m. 

Therefore, if we now look at the R n side and if we take any vector x in R n, A x will 

always go and fall in the range of A. So, any vector in R n if we calculate A x, it will be 

in the range of A. But, since b is not in the range of A, b will not be equal to A x. 
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So, b does not belong to the range of A means for any x belonging to R n, we cannot get 

Ax equal to b. Therefore, b minus Ax will not be equal to the 0 vector for any x in R n, 

because the moment b becomes equal to A x, then b belongs to the range of A. So, b 

does not satisfy the consistency condition means b does not belong to the range of A; 

that can be translated into the fact that b minus Ax is not equal to theta m for any x in R 

n. 
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This means since it is not 0, its length squared will not be 0, and therefore, it will be 

strictly 0. And, this we will called as the error of… If we take x as the solution, if we had 

thought Ax equal to b; that is, if we had thought x as the solution of the system, we 

would get an error, because Ax is not equal to b; and, that error is measured by what is 

the difference I am getting. If I had thought Ax as the solution, I should have got b; I did 

not get b; so, the error is b minus Ax squared; and, that I will call as the square error e b 

x. So, e b x is called b minus Ax squared. And, it is called the square error of taking x as 

a possible solution for Ax equal to b. 
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Now, what we would like to do is – since we know nothing is going to go to b, we would 

like to get as close to b as possible. So, we would like this error to be minimum. If x 

belongs to R n, is such that this error is minimum – we will call it x l – we call it least 

square solution for Ax equal to b. Therefore, what is the notion of the least square 

solution? 
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Definition – x l belongs to R n is called the least square solution for Ax equal to b. If you 

look at the error taking x l as the solution, that will be less than or equal to if you take 

any x as the solution for every x in R n; that is, same as the error of taking x l as the 

solution will be always less than or equal to the error taking any other x. So, our only 

hope is to find least square solutions when b does not satisfy the consistency condition. 

We shall next see how to use the basis that we have chosen to find the structure of the 

least square solutions. 


