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Lecture No. # 34  

Hermitian and Symmetric Matrices – Part 3 
 

We have studying the Eigen properties of particularly Hermitian matrices. 
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Recall that we say A is Hermitian if A star equal to A; that is, the matrix is self conjugate 

(( )) A star is called Hermitian conjugate of A. And, if A is its own conjugate, then we 

call it a Hermitian matrix. So, A belonging to C n cross n is an n by n complex matrix, is 

called Hermitian if it is its own conjugate. And, we were looking at some very specific 

Eigen properties of such a matrix. 

We had the following important properties of such a matrix. A is Hermitian; then, we 

have one – All eigenvalues of A are real. This is a very important property of Hermitian 

matrices. All the eigenvalues of A must be real. The second important property is that the 

eigenvectors corresponding to distinct eigenvalues are orthogonal. So, these are the two 

important properties. The first one says about the structure of the eigenvalues; says that 



they are all real; they will all be… Even though the matrix may be complex, as long as 

the matrix is Hermitian, the eigenvalues are bound to be real. So, that is the first 

property, which is the structure of the eigenvalues. Secondly, the second property is 

about eigenvectors. The eigenvectors are always orthogonally oriented. If you take two 

different eigenvalues, then take the eigenvectors corresponding to each one of them, they 

are bound to be oriented orthogonally to each other. These are the two important 

properties of Hermitian matrices. 

(Refer Slide Time: 02:57) 

 

We also found that… Without proving, we said that for every eigenvalue of A, the 

algebra multiplicity is equal to geometrical multiplicity. And therefore, A is 

diagonalisable. Using these properties, we showed that we can construct a unitary 

matrix; that is, we want eventually assert that A is not only diagonalisable, but A is 

unitarily diagonalisable. So, we can construct a unitary matrix U such that U star A U is 

a diagonal matrix. 
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And, we observed that U is constructed using orthonormal eigenvectors of A. And, D is 

constructed using the eigenvalues of A. These were the two important constructions. The 

orthonormal eigenvectors give rise to the unitary matrix U and the eigenvalues give rise 

to the diagonal matrix D. Since U is unitary, U star is U inverse and U star inverse is U. 

So, this U star A equal to D gives us the decomposition. 
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Hence, we have the decomposition of A as A equal to U D U star into three simple 

matrices. The two extreme matrices are unitary and therefore, easily invertible; and, the 



medium one is diagonal and therefore, easily handleable – into a product of three simple 

matrices. 

We shall now look at some simple examples of these calculations. Consider the matrix A 

equal to 3, minus 1, 1, minus 1, 5, -1, 1, minus 1, 3. Notice that this is a real symmetric 

matrix. And, as we observed yesterday in the last lecture, the real symmetric matrix case, 

we get everything; in place of unitary, we get orthogonal matrices; that is, U star is… U 

is real and U star becomes transpose. 
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Now, look at this matrix. A is a real symmetric matrix. Then, let us find… The 

characteristic polynomial of this can be shown to be lambda minus 6 into lambda minus 

3 into lambda minus 2. We have to just write the determinant of the lambda m minus A 

and expand it. Then, we find that it can be factored as lambda minus 6 into lambda minus 

3 into lambda minus 2. Therefore, there are 3 distinct Eigen values. They are lambda 1 

equal to 6, lambda 2 equal to 3, and lambda 3 equal to 2. And obviously, their algebraic 

multiplicities are all 1. So, we have a real symmetric matrix now, whose eigenvalues are 

known; we know the algebraic multiplicities. 
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Let us find the eigenvectors. The first, the eigenspace corresponding to lambda 1 equal to 

6. For this, we must look at the matrix A minus 6 I, because lambda 1 is 6. A minus 6 I is 

this matrix minus 3, minus 1, 1, minus 1, minus 1, minus 1, 1, minus 1, minus 3. This 

matrix taking obtained by taking the matrix A (Refer Slide Time: 08:10) and subtracting 

6 from the diagonal. So, if you subtract 6 from the diagonal, you get this (Refer Slide 

Time: 08:18) and all the other items remain unchanged. Now, to find the eigenspace W 

1, we must find the null space of A minus 6 I. 

(Refer Slide Time: 08:36) 

 



That is, to find the solution space of system A minus 6 I into x 1, x 2, x 3 equal to 0, 0, 0. 

We have to solve this system. When we solve this system, we can easily see that the set 

of all solutions we get is of the form alpha, minus 2 alpha and alpha; where, alpha is any 

real number. And therefore, we see that 1, minus 2, 1, is a basis for W 1. Recall the way 

we construct the matrix U and the way we treat the eigenvectors for a Hermitian or a real 

symmetric matrix. It is always the orthonormal eigenvectors. So, this is an eigenvector. 

Any nonzero vector in W 1 is an eigenvector; U 1 is an eigenvector, but it not 

normalized to one. So, we normalize it. 
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That is, the eigenvector corresponding to the eigenvalue 1. And, there is only one 

eigenvector, because algebraic multiplicity. So, we divide by its length, which is square 

root of 6 and we get the eigenvector corresponding to the value lambda 1 equal to 6. 

Similarly, we have the eigenvalue lambda 2 equal to 3. So, we look at W 2, the 

eigenspace, which is a null space of A minus 3 I. 
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Now, if you write A minus 3 I… A minus 3 I is obtained from subtracting 3 along the 

diagonal of A. When we do that, we get this matrix. And then, we have to find the 

solution space of A minus 3 I into x 1, x 2, x 3 equal to 0, 0, 0. And, A minus 3 I matrix 

is given here. And so, when we solve the system, we get the solution as W 2 equal to the 

set of all vectors of the form beta, beta, beta, where beta belongs to R. 
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Now, we see that u 2 equal to 1, 1, 1 is a basis for W 2 and this is not normalized. So, we 

construct the orthonormal vector corresponding to the eigenvector 2. And there is only 



one of them, because of the algebraic multiplicity 1. If we divide by the length, we get 1, 

1, 1. So, that is the orthonormalized eigenvector corresponding to lambda 2. 

Now, observe that any vector in W 1 is of the form (Refer Slide Time: 12:12) alpha, 

minus 2 alpha, alpha. And, any vector in W 2 is of the form (Refer Slide Time: 12:17) 

beta, beta, beta. And, if you take the dot product, you find that alpha beta, minus 2 alpha 

beta; they get cancelled and therefore, they are orthogonal. Note that any vector in W 1 is 

orthogonal to any vector in W 2. And, this is what we have had that when we have a real 

symmetric matrix or a complex Hermitian matrix. The eigenvectors corresponding to 

distinct eigenvalues will be orthogonal. 
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Now, let us look at the corresponding eigenspace for W 3. So, we must look at null space 

of A minus 2I, because lambda 3 is 2. Now, A minus 2I is the matrix obtained by 

subtracting 2 from the diagonals and we get this matrix. And therefore, to find a null 

space, we must find the solution space of A minus 2 I x 1, x 2, x 3 equal to 0, 0, 0. 
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Now, when we have the A minus 2I here, when we solve the system, we get the solution 

space W 3 to be the set of all vectors of the form gamma, 0, minus gamma; where, 

gamma belongs to R. And, we see that 1, 0, minus 1 is a basis for W 3. And, when you 

normalize it, you get the eigenvector corresponding to the third eigenvalue. And, there is 

only one – 1 by root 2 into 1, 0, minus 1. 
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Therefore, if we summarize, we have the eigenvalues on one side, eigenvectors 

normalized on other side; we have lambda 1 equal to 6 and the eigenvector was 1 by root 



6 into 1, minus 2, 1. This is what we called as phi 1 1. And similarly, for lambda 2 equal 

to 3, we had the eigenvector 1 by root 3 into 1, 1, 1. And, lambda 3 equal to 2; we get phi 

3 2 equal to 1 by root 2 1, 0, minus 1. Now, observe that all these vectors are length 1 

and they are orthogonal to each other. Also, observe that (Refer Slide Time: 15:19) every 

vector in W 3 is orthogonal to every vector in W 1 and W 2. That is the statement that 

eigenvectors corresponding to different eigenvectors are orthogonal to each other. So, for 

the three eigenvalues, now, (Refer Slide Time: 15:45) we have got the three 

eigenvectors. They are orthonormalized. Notice that the eigenvalues are all real, because 

the matrix is real symmetric. Whenever you have a real symmetric matrix or a complex 

Hermitian matrix, all the eigenvalues will be real. 
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Now, we look at the construction of U, the unitary matrix. How do we construct? We put 

these eigenvectors along the diagonal. If we put the eigenvectors, we have 1 by root 6, 

minus 2 by root 6, 1 by root 6. That is the first eigenvector. Then, the second eigenvector 

comes along the second column. So, it is 1 by root 3, 1 by root 3, 1 by root 3. And, the 

third eigenvector comes along the third column – 1 by root 2, 0, minus 1 by root 2. 
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Now, since the columns are orthonormal, U is unitary. And now, it is easy to check that 

if we now take the matrix A and multiply U star A U, we would get… What is the same 

in this case? It is the same as U transpose A U, because U star is U transpose, because we 

are dealing with real matrices. And, this will be the diagonal matrix. And, what will be 

the diagonal entries? The eigenvalues corresponding to the columns eigenvectors – the 

first column corresponds to this eigenvalue 6; the second column corresponds to the 

eigenvalue 3; and, the third column corresponds to the eigenvalue 2. These three 

eigenvalues will come along the diagonal. The rest of the entries will be 0 and we have 

this diagonalisation process. 

Now, we can actually substitute (Refer Slide Time: 17:56) U and therefore, U transpose; 

and, we know the matrix A. We can actually carry out the multiplication and verify that 

it is indeed the diagonal matrix 6, 0, 0; 0, 3, 0; 0, 0, 2. 
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And, we get the decomposition of A as A equal to U D U star or U D U transpose, 

because now, U star is U transpose. Now, what is the U? We have the U here. We can 

substitute that and we have the diagonal matrix here; we can substitute that. And, since 

we know (( )) U transpose, so that we see that now, the decomposition of A as the 

product of three simple matrices. This is the demonstration of all the results that we 

obtained for real symmetric matrix or complex Hermitian matrix. 

(Refer Slide Time: 19:04) 

 



Now, let us look at another example without too many details. Look at the matrix A – 6, 

minus 2. 2; minus 2, 3, minus 1; 2, minus 1, 3. Again, notice that A transpose is equal to 

A and A is real. And, therefore, A is a real symmetric matrix. 
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Once again, if you calculate the characteristic polynomial of lambda, which is the 

determinant of lambda I minus A, we have the A, we have the I. If we substitute, we get 

the determinant. When we expand the determinant, we get lambda minus 2 square into 

lambda minus 8. Now, in this case, we have a multiple eigenvalue. So, the distinct 

eigenvalues are lambda 1 equal to 2 with algebraic multiplicity is 2. And, the eigenvalue 

lambda 2 is 8 with algebraic multiplicity is 1. Notice that all the eigenvalues are real. 
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Now, let us find the eigenspaces. W 1 is the null space of A minus 2 I, because lambda 1 

is 2. So, A minus lambda 1 I is A minus 2I. So, A minus 2I with is given matrix is just 4, 

minus 2, 2; minus 2, 1, minus 1; 2, minus 1, 1. We get this matrix by subtracting 2 from 

the diagonal. Now, you find the solution space of the system A minus 2I x 1, x 2, x 3 

equal to 0, 0, 0. We have the matrix A minus 2I; we have homogeneous system; we 

know how to solve it. 

(Refer Slide Time: 21:45) 

 



And, when we solve this, we get W 1; the set of all solutions is of the form alpha, beta, 

minus 2 alpha plus beta; where alpha and beta are real. So, this is the set of all solutions 

of this homogenous system. And, we see easily therefore, U 1 equal to 1, 0, minus 2; 

and, U 2 equal to 0, 1. 1 is a basis for W 1. And therefore, dimension of W 1 is 2. And 

therefore, g 1, the algebraic multiplicity is 2. 
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And therefore, see the algebraic multiplicity was 2; and, this is also the geometric 

multiplicity. Thus, the geometric multiplicity and algebraic multiplicity are the same. 

The basis we have found for W 1 is not orthonormal. So, we apply Gram-Schmidt to the 

above basis. Then, we get an orthonormal basis. We will leave it as an exercise to find 

this orthonormal basis using Gram-Schmidt. We get the orthonormal basis. 

Now, these are orthonormal eigenvectors corresponding to the eigenvalue 1. But, there 

are two eigenvectors and they turn out to be 1 by root 5, 0, minus 2 by root 5. And, phi 2 

1 turns out to be 1 by root 30 into 2, 5, 1. So, we get the two eigenvectors corresponding 

to the eigenvalue lambda 1 equal to 2. And there are two eigenvectors: algebraic 

multiplicity is 2; geometric multiplicity is 2. We get two orthonormal eigenvectors. 
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Let us next find W 2, which is a null space of A minus lambda 2I; lambda 2 is 8. So, A 

minus 8I. Now, A minus 8I is obtained from the given matrix A by subtracting 8 from 

the diagonal. When we do that, we get this matrix. Now, we have to find the solution 

space of the homogenous system A minus 8 I x 1, x 2, x 3 is equal to 0, 0, 0. 
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Now, we have the matrix A minus 8 I. We can apply the rho operations or any other trick 

to solve the system. We get W 2 to be the set of all vectors of the form beta, minus beta 



by 2, beta by 2; where, beta is any real. And therefore, we take beta equal to 2; we get U 

equal to 2, minus 1, 1 – a basis for W 2. 
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And therefore, dimension of W 2 equal to 1, which implies g 2 equal 1. Again, we find 

the algebraic multiplicity of the second eigenvalue is 1, the geometric multiplicity is also 

equal to 1. Now, this eigenvector is not normalized; it is not (( )) 1. So, by normalizing 

it… And, there will be only one eigenvector corresponding to the eigenvalue 2; and, that 

is given by 1 by root 6 into 2, minus 1, 1, because the length is root 6. Now, notice that 

every vector in W 1 is orthogonal to every vector in W 2. It is easy to check from the 

structure of these two spaces that every vector in W 1 is orthogonal to every vector in W 

2. This is the corroboration of the statement that the eigenvectors corresponding to 

distinct eigenvalues must be orthogonal to each other. 
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Now, the construction of U – the unitary matrix U. Now, to get U, we must put the 

eigenvectors along the orthonormal eigenvectors that we found. We have 1 by root 5, 0, 

minus 2 by root 5; then, 2 by root 30, 5 by root 30, and 1 by root 30; and then, we have 2 

by root 6, minus 1 by root 6, 1 by root 6. So, this is the matrix obtained by putting the 

three eigenvectors along the three columns. Then, U transpose U is equal to identity, 

because U is unitary. Why is U unitary? Because columns are orthonormal. The moment 

the columns are orthonormal, the matrix becomes unitary. So, that is the matrix U. 
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And then, we get – if we know put U transpose A U – U star is U transpose in this case, 

we can easily verify. We can substitute for U; we can substitute for U transpose; the 

matrix U is given. And, verify that the product is going to give a diagonal. Which 

diagonal? The first two columns corresponds to the eigenvalue 2. So, the first two 

diagonal entries will be 2. Then, the third column corresponds to the eigenvalue 8. And 

therefore, the third diagonal entry will be 8 and therefore, this is the diagonalisation of U. 
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And, the decomposition of A is given by A equal to U – this diagonal matrix into U 

transpose; where, U is as obtained here (Refer Slide Time: 29:09). And therefore, we see 

that A has been decomposed into the product of three simple matrices; the two extreme 

factors being unitary and the middle one being diagonal. We seen therefore the structure 

of real symmetric and complex Hermitian matrices through their eigenvalues. We 

observed that the eigenvalues are real; eigenvectors are orthogonal to each other when 

the eigenvalues are distinct. And, we can find eigenvector basis for the whole space. 

And, corresponding to each eigenvalue, if the algebraic multiplicity is A j, then exactly A 

j, orthonormal eigenvector is corresponding to them. And, when you put all these 

orthonormal vectors along the columns of the matrix, it become the unitary matrix and 

we get the unitary diagonalisation in the case of complex; and orthogonal diagonalisation 

in place of real. And, we get the decomposition of a given Hermitian matrix or a real 

symmetric matrix into a product of three simple matrices – two of them being unitary 



and the middle one being a diagonal matrix. And, the unitary matrix U is constructed 

using the eigenvectors of… See when we construct (Refer Slide Time: 30:44) this U, it is 

constructed using the three eigenvectors of U. And, the diagonal matrix is constructed 

using the eigenvalues. And, each eigenvalue appears as (Refer Slide Time: 30:57) many 

times as this algebraic multiplicity. So, the construction of this decomposition involves 

both the eigenvalues and the eigenvectors. Thus, the eigenvalues and the eigenvectors of 

a Hermitian matrix play a very crucial in looking at the structure of the matrix in a very 

simple form. 
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We have see the decomposition of a Hermitian matrix into a product of three simple 

matrices. Now, we shall look at the same in a different angle and look at the 

decomposition of matrix, not as a product of simple matrices, but as the sum of simple 

matrices. So, decomposition of A as the sum of simple matrices – this is our goal. We 

say what is meant by simple matrices as the goal (( )) This is connected with one of the 

question that we raised at the beginning of the course. So, what we do is the following. 

We start with the matrix A; H n is the collection of all Hermitian matrices; that is, A 

belongs to C n by n and A is Hermitian. 

Now, we start with a Hermitian matrix. Then, we have its characteristic polynomial with 

the usual (Refer Slide Time: 32:36) notations; lambda 1, lambda k are the distinct 

eigenvalues. And, a 1, a 2, a k are the algebraic multiplicities of these eigenvalues. And 



then, we have the W j to be the null space of A minus lambda j I, which is the eigenspace 

corresponding to lambda j I. 
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And then, we have the orthonormal basis for W j, which we denote by phi j 1, phi j 2, phi 

j a j. This is the notation we have used in the last lecture corresponding to the j th 

eigenvalue. So, the superscript j says that we are talking about the eigenvalue lambda j; 

and, the subscript says the ordering of the eigenvector. So, there are a j orthonormal 

eigenvectors corresponding to the eigenvalue lambda j. And then, we said that… We 

observed last time that if we put all these things together j equal to 1 to k – these basis, 

the individual orthonormal basis is an orthonormal basis for C n. So, how does this B 

looks like? It starts with phi 1 1; then, goes on up to phi 1 a 1; then, it goes to phi 2 1; 

then, phi 2 a 2 (Refer Slide Time: 34:24). So, at least first, the a 1 eigenvectors, 

orthonormal eigenvectors corresponding to lambda 1; then, the a 2 eigenvectors 

corresponding to lambda 2. And, in the end, it (( )) the eigenvectors corresponding to 

lambda k and there are a k of them. So, this is how the basis looks like. Now, we have an 

orthonormal basis. 
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Now, any vector can be expanded in terms of the orthonormal basis. Let x be in C n. We 

can expand x in terms of this orthonormal basis as… Now, see first, we will write all the 

terms corresponding to the first a 1 base vectors; then, a 2 base vectors. So, we can use 

this notation x is equal to… First, expand with respect to the jth basis vectors and do this 

for every one of the j’s. So, we can write the expansion of x in terms of this orthonormal 

basis in this form – x phi r j – the orthogonal projection of x along the direction times the 

projection. This is the Fourier expansion, which we have seen before. For any 

orthonormal basis, we can expand a vector in terms of the orthonormal basis. 
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Now, this implies if we now look at A x, I have to multiply by A; it is a sum. So, I can 

distribute the multiplication to each one of these terms. This is a constant; this is a 

number; (( )) product is a number. So, I have look at A phi r j. But, I know the moment 

as this superscript is there, that means this is an eigenvector corresponding to the 

eigenvalue lambda j. So, that becomes the two summations and this coefficient. And 

then, this is the eigenvector corresponding to eigenvalue lambda j. So, it can be written 

as lambda j phi j r. If we recollect, we can write the inner product of two vectors: x 

comma y as y star x. So, this is the same as phi r j star x. Inner product is written in terms 

of the matrix dot product, but now, it is a conjugate. So, phi r j star x; and then, lambda j 

and then phi r j. 
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We can rewrite this as summation j equal to 1 to k summation r equal to 1 to a j lambda j 

phi j r phi r j star x; phi r j star x is a number. So, this is the complete product. And, we 

can rewrite as lambda j phi r j phi r j star – this whole thing multiplying x, because 

matrix multiplication is distributive. So, we will write this now as j equal to 1 to k; r 

equal to 1 to a j lambda j – we will write this as A r j x; where, A r j is just phi j r pie j r 

star. So, this is what A x is. Now what is the A r j? If U look at phi r j, it is an 

eigenvector; it belongs to C n. So, that is an n by 1 vector. Therefore, this is obtained by 

transposing and conjugating. So, that is the 1 by n vector. So, the product is going to be 

an n by n matrix. So, A r j is an n by n matrix. 
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In short notation, we will write it as phi r j. This is what in the beginning of the course 

we called as the outer product or the tensor product. A r j is phi r j tensor phi r j. It is the 

tensor of phi r j, which is (( )). So, phi r j tensor phi r j means phi r j phi r j star. That is 

the matrix phi r j phi r j star. So, this phi r j phi r j star is written in this form. Therefore, 

A r j is a matrix. Now, (Refer Slide Time: 39:54) A r j is a matrix; lambda j is a number. 

So, number times matrix is a matrix. We are adding a number of n by n matrices; that is 

going to be another n by n matrix. So, we let K to be all that sum – j equal to 1 to k; r 

equal to 1 to a j lambda j phi A r j. Now, this is an n by n matrix. What we have is A x. 

This A x is equal to k x and this is true for every x; A x is equal to k x for every x in C n. 

Now, if there are two matrices A and k such that A x equal to kx for every x in C n, then 

A must be equal to k. 
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This implies A equal to K. Therefore, we have A equal to summation j equal to 1 to k; r 

equal to 1 to a j lambda j A r j. Where, A r j again I repeat is phi r j tensor phi r j, which 

is the same as phi r j phi r j star. Now, we see already we have some decomposition. We 

have decomposed the matrix A as the sum of a number of matrices lambda j A r j; A r j is 

a matrix; so, we are looking lambda j A r j. Thus, we have decomposition. 
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Let us analyze this decomposition little bit carefully by looking at each term. Let us call 

this as 1. In 1, we see a decomposition of A as the sum of matrices is of the form lambda 



U cross U by suitable values of lambda and U. So, let us analyze each one of these. So, 

let us analyze how simple each one of these terms is. 
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Typically, let U belong to C n and U not equal to theta n. And, let say T be a matrix, 

which is U tensor U, which is equal to U U star. Now, for any x in R n, we have… – and, 

let us without the loss of generality even take length of U to be 1, because in our 

construction, all the vectors involved are of length 1. So, we can as well look at these 

things with the length 1. For any x in R n, we have T x is equal to U U star x. Now, 

matrix multiplication is associative. So, it is U star x. Now, U star x is a number. So, it is 

of the form some alpha x U, where alpha x is U star x, which belongs to C. And 

therefore, we find that any vector in the range of T is of the form T x. And therefore, 

every vector is a multiple of U. 



(Refer Slide Time: 45:10) 

 

Hence, since every vector in the range of T is of the form T x, we see that every vector in 

the range of T is a scalar multiple of U. And, T of U is U star U into U, which is equal to 

U, because U is unitary; U star U is the length U square, which is 1. And therefore, U 

belongs to range of T, R T. Therefore, U is a vector in the range of T; and, every other 

vector in the range of T is a multiple of U. 
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And hence, U spans the range of T and U not equal theta n. Therefore, U is a basis for 

range of T. And therefore, rank of T, which is equal to the dimension of range of T… 



Now, since there is only one vector in the basis for the range of T, the dimension is 1. 

Therefore, any matrix of the form T equal to U tensor U; U not equal to theta U normally 

equal to 1 is of rank one. Now, since all the matrices A r j are all of this form (Refer 

Slide Time: 47:12) – they are all of the form U tensor U; U is phi r j; and they are all of 

length 1. Then therefore, by the structure of A r j we get that. Hence, (Refer Slide Time: 

47:30) each A r j is of rank one. And therefore, we have seen that we are able to express 

the matrix A. 
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If we look at this (Refer Slide Time: 47:48) representation, these are all of rank one. So, 

this is only a linear combination of rank one matrices. So, we have expressed… The first 

thing, we observe the following. Thus, the representation A equal to summation j equal 

to 1 to k summation r equal to 1 to a j lambda j phi j r tensor phi j r gives us a 

decomposition of A as the linear combination of rank one matrices. This is the first 

observation that we have about the decomposition of the matrix as the sum of matrices. 

Now, they are sum of simple matrices, because now, they are all linear combinations of 

rank one matrices. 

Now, let us analyze this a little more. What we observe is that when we have an 

eigenvalue 0, the terms corresponding to that eigenvalue will all disappear, because we 

will be multiplying by that eigenvalue lambda j. For example, we are having this 

multiplier (Refer Slide Time: 49:31) lambda j. So, whenever we have the terms 



corresponding to an eigenvalue 0, these terms will completely disappear from this 

summation. So, let us make that point. 
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Suppose let us say for convenience last eigenvalue is equal to 0; that is, one of the 

eigenvalues is 0 and we set it as lambda k. So, one of the eigenvalues is 0 say. What does 

that mean? This means all the terms corresponding to this eigenvalue in the above 

decomposition disappear, because we will be multiplying by that particular eigenvalue. 

We are multiply (Refer Slide Time: 50:59) lambda j times this decomposition; you will 

see that there is a multiplier lambda j, so that the eigenvalue corresponding to k is 

lambda; k term we take. Then, all those terms will disappear. Now, how many terms are 

there? What is the effect of the disappearance? All these if you look at, then we get a 

decent decomposition (( )) 
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How many such terms are there? The number of terms corresponding to lambda k equal 

to 0 will be a k. What is a k? That is equal to the algebraic multiplicity of lambda k equal 

to 0, the eigenvalue lambda k, which means this is the same as the geometric multiplicity 

of lambda k equal to 0, which is the dimension of null space of A minus lambda k, but 

lambda k is 0 as the dimension of null space of A, which is just the nullity of A. In other 

words, nu A terms will totally disappear from the representation of A. So, we have the 

decomposition of A as the sum as the linear combination of matrices, linear combination 

of rank one matrices. A prior, we had n terms and because of the multiplier factor of the 

eigenvalue, whenever we have an eigenvalue 0, nu A, a nullity times, that many terms 

will disappear from the eigenvalue. 
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Hence, the above sum becomes a decomposition of A into the sum of – now, totally we 

had n terms – we had a 1 terms corresponding to lambda 1, a 2 terms corresponding to 

lambda 2, etcetera. Out of which now nu A disappeared; n minus nu A terms will be 

there, but n minus nu A is the rank of the matrix of rho one-rank matrices. Now, each 

one is one rank, because it is one rank multiplied by a constant – nonzero constant. 

Remaining eigenvalues are nonzero. So, all other terms are of rank one matrices. Thus, 

we see that the matrix, which has rank rho has been expressed as the sum of rho one-rank 

matrix. Thus, the matrix, A which has rank rho has been expressed as the sum of rho 

one-rank matrices giving us a decomposition of – remember, we are dealing with the 

Hermitian matrix – decomposition of a Hermitian matrix as the sum of simple matrices. 
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And, when we say simple, we mean rank one matrices. Now, we see therefore, in the 

case of Hermitian matrices, we have very nice decompositions; we have a product 

decomposition; we can decompose the matrix as the product of three simple matrices: 

two of them being unitary, the middle one being diagonal. We can diagonalise the matrix 

A; we have all eigenvalues real. And, we can also express the matrix as the sum of 

simple matrices namely sum of rank one matrices. And, if the rank of the matrix is rho, 

we get exactly A as the sum of rho one-rank matrices. And, these one-rank matrices are 

easily constructed as the tensor product of an eigenvector with itself. And, these are the 

eigenvectors corresponding to the nonzero eigenvalue of the matrix. So, in the case of 

Hermitian matrices, we have very nice structure, we have very nice decompositions, 

which should automatically help in the analysis of the matrix as well as the systems of 

equations connected with such Hermitian matrices. But, all these we have seen only for 

Hermitian matrices. 

What does one do when the matrix is not Hermitian or if you have a real matrix, which is 

not real symmetric, what do we do in such cases? Or, if you do not even have a square 

matrix and you are dealing with a rectangular matrix, what do we do in such cases? So, 

what we shall see is we can reduce all these problems to the analysis of some suitable 

Hermitian or real symmetric matrix. Therefore, we will refer to all the results we have. 

And, through this, we can conclude about the decompositions as product, 

decompositions as sum and so on of any general matrix. To this end, we shall start 



looking at a very special class of Hermitian matrices, which we shall be using in our 

analysis of a general matrix. 


