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 In the last lecture, we introduce the notions of Hermitian matrix, unitary matrix and of 

orthogonal real orthogonal matrices, this will be three important notions that we 

introduce let us recollect.  
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Suppose A is an n by n complex matrix, we define A star the Hermitian conjugate as the 

transpose conjugate. So, you flip the matrix and conjugate every entry, you get the 

Hermitian conjugate A star. Then we said we say U belonging to C n n is a unitary 

matrix unitary matrix.  
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If U star U is the identity matrix and hence U U star will also be identity, this means U 

star is U inverse and U star inverse is U then we say the matrix is unitary. Now, suppose 

U is unitary and its columns are phi 1, phi 2, phi n.  
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Then we have U star U, U star will be the columns flipped and conjugated and U will be 

phi 1, phi 2, phi n when we multiply these 2, we get a matrix let us say k j, let us use k j 

r, a matrix k j r, 1 less than or equal to j less than or equal to n, 1 less than or equal to r 

less than or equal to n where k j r is simply phi j star phi r.  
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Now, since U is unitary, U star U must be identity, but if U is unitary, U star U must be 

identity. Hence k j r must be equal to 1, if j equal to r and 0, if j is not equal to r because 

for an identity matrix, the diagonal entries are all 1 and the half diagonal entries are 0, 



comparing with this, we get phi j star phi r is equal to 1, if j equal to r; 0, if j is not equal 

to r.  
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This says the inner product of phi r and phi j is 0, if j equal to r, 1 j not equal to r and 1 if 

j equal to r that says, the phi 1, phi 2, phi n are orthonormal vectors. Thus, we see that U 

is unitary then the columns of U form an orthonormal vectors. So, what is the 

conclusion? The conclusion is U is a unitary matrix imply the columns of U form an 

orthonormal set.  
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Now, we have verified last time that, if the columns of U are orthonormal then the U is 

unitary. So, we had seen that columns of U are unitary are orthonormal implies U is 

unitary, thus combining these 2, we get the important conclusion that U is unitary, if and 

only if, the columns of U are form an orthonormal set. Thus, we can easily recognize 

whether a matrix U is unitary or not by looking at its columns and seeing whether they 

form an orthonormal set and at all.  
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So, let us look at some examples before we see the real version, let us take the matrix U 

to be 1 i i 1 then the columns are 1 i and i 1, if you look at their dot product so, we have 

the dot product of 1 with 1 i with i 1. So, the first component into the conjugate of this 

first component of the second vector plus second component of the first vector times the 

conjugate and that is equal to 0. So, the column phi 1 is the column phi 2. So, we have 

phi 1 comma phi 2 is equal to 0. 
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So, the columns are orthogonal the columns are orthogonal, but their lengths the length 

of phi 1 square that is phi 1 comma phi 1 is 2 not equal to 1. Similarly, phi 2 square 

which is phi 2 comma phi 2 is equal to 2 not equal to 1. Therefore, even though the 

columns are orthogonal, they are not of length 1 and hence U is not unitary. 
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 Let us look at another example, U equal to 1 by root 2 i by root 2 i by root 2 1 by root 2. 

Now, we have the columns are phi 1 equal to 1 by root 2 and i by root 2 and phi 2 equal 

to 1 by root 2 i by root 2 1 by root 2.  
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Again, if we take the inner product of phi 1 and phi 2 we get the first component of phi 1 

into the conjugate of the first component of the second vector plus the second component 

of the first vector into the conjugate of the second component which is 0 and hence the 

vectors are orthogonal. So, phi 1, phi 2 are orthogonal also phi 1 comma phi 1 is 1 by 2 

plus 1 by 2, the inner product of phi 1 with itself is 1 by 2 plus 1 by 2 is 1; phi 2 comma 

phi 2 is also 1 by 2 plus 1 by 2 which is 1; and therefore, they are normalized. Hence, phi 

1 and phi 2 form an orthonormal set. So, thus the columns of this given matrix form an 

orthonormal set and we observed then it must be unitary. So, therefore U U is unitary. 

We can directly check this fact by calculating U star U, what is U? it is 1 by root 2 i by 

root 2 i by root 2 1 by root 2.  
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So, U U star will be 1 by root 2 minus i by root 2 minus i by root 2 1 by root 2 which is 

transpose and then conjugate, times U will be 1 by root 2 i by root 2 i by root 2 1 by root 

2 to take the product i get 1 by 2 minus i square by 2 which is plus 1 by 2 which is 1 and 

then 1 by i by root 2 minus i by root 2 minus i by root 2 plus i by root 2 again we get 1 

which is i 2. So, therefore we directly verify that U star U is identity. So, if the columns 

are orthogonal it is not enough, the columns are normalized alone it is not enough, the 

columns are orthonormal then the matrix becomes unitary. 
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In the real case, in the case of real matrices we say o belonging to R n cross n is an 

orthogonal matrix, if o transpose o is identity. 
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In this case, the columns will be orthogonal orthonormal, but with the real inner product 

because we are now everything is real so, we let the real inner product in R n. As an 

example, look at the matrix U equal to 1 2 2 1 we have U transpose is equal to U, but the 

columns are not orthogonal and not of length 1 and therefore, U is not orthogonal is not a 

orthogonal matrix. On the other hand, if we look at the matrix U which is 1 over root 2 1 

over root 2 1 over root 2 minus 1 over root 2.  
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We see that the columns are orthogonal and have length 1and therefore, columns form 

orthonormal set columns form an orthonormal set and hence U is an orthogonal matrix. 

So, these were two important notions that we introduced last time namely the unitary 

matrix and the orthogonal matrix and the most important class of matrices that we 

introduce was H n, the class of all Hermitian matrices. H n is the collection of all those 

complex matrices for which A star is equal to A, that is they are self conjugate, the 

Hermitian conjugate with itself.  
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We observed the following important properties following important properties of any 

matrix in H n that is, any symmetric any Hermitian matrix will have these following 

properties. The first property we had was that A belongs to H n that is A is a Hermitian 

matrix implies A x comma y is equal to x comma A y for every x y in C n. Then we 

observed that all diagonal entries A belongs to H n implies all diagonal entries of A must 

be real.  
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We also had observed that if A belongs to H n that is A is a Hermitian matrix then A x 

comma x is real for every x in r n, even though the matrix A is complex as long as it is 

Hermitian and even though the vectors x may be complex A x comma x will always be 

real. Then we observed that, if A and B are Hermitian then A plus B is also Hermitian 

then if A is Hermitian alpha is any complex numbers then alpha A is Hermitian, if and 

only if, alpha is real and finally, we had the property that, if A and B are Hermitian 

implies A B is also Hermitian if and only if, A and B commute that is A B equal to B A. 

These are some simple properties of Hermitian matrices.  
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Now, we mention that we are going to study Hermitian matrices in detail because they 

posses some nice Eigen properties. So, we shall now begin our study of Eigen properties 

of Hermitian matrices (no audio from 16:37 to 16:47). We begin with the matrix A 

which is Hermitian and so, we now look at certain property, the first fundamental 

property that we are going to look at that the following. Suppose, lambda is an Eigen 

value of A so, suppose we consider an Eigen value of A. Now, lambda is an Eigen value 

means there must be a corresponding Eigen vector.  

So, this implies there exist a vector U not equal to theta n, U belonging to C n such that 

A U equal to lambda U which is what is meant by saying, that lambda is an Eigen value. 

This equation A U equal to lambda U, U is a non trivial solution for the system; it always 

must exist, if lambda has to be an Eigen value. Now, that says lambda times U comma U 

can be written as lambda U comma U, because we know that, when a complex number is 

a multiplier of a vector in an inner product in the first factor then it can be pulled out 

without any change. 

 So, lambda is a multiplier of U and it is in the first factor so, it comes out as lambda 

outside. Now, lambda U is A U because we have U is an Eigen vector corresponding to 

the Eigen value lambda. Now we had the fundamental property of Hermitian matrices 

that A U U is always real A x x is always real, we observed that, if A is Hermitian A x x 

is real. So, by property three that is, we get this must be real, so this is real.  



So therefore, this implies lambda equal to A U U by U U, I can divide by U comma U 

because U is a non 0 vector and hence U U will be not 0, it will be a non zero number. 

Now, if you look at the right hand side, the numerator is real, the denominator is real 

because U U is always real and greater than or equal to 0, the ratio of two real numbers 

would be real and therefore, it says lambda is real. So, therefore, we have concluded that 

any Eigen value of A must be real. 
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So, the first fundamental property is that every Eigen value of a Hermitian matrix must 

be real. Now, we observed last time that every real symmetric matrix can be thought of 

whether complex Hermitian matrix and hence, we get that every real version every Eigen 

value of a real symmetric matrix (no audio from 20:28 to 20:36) must be real. So, there 

lots of quantities that they are associated with a Hermitian matrix that are real. We found 

that, if A is Hermitian matrix all the diagonal entries must be real. We also found that, if 

A is Hermitian then the A x comma A x is always real for all ma vectors x. Now, we 

have found that all the Eigen values must also be real. So, every Eigen value of a 

Hermitian matrix is real and every Eigen value of a real symmetric matrix is also real.  
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So, these are two, this is the first fundamental property namely the Eigen values being 

real, it is the fundamental property of Hermitian and real symmetric matrices. We now 

look at what it means in terms of Eigen functions Eigen vectors. So, again let us look at a 

Hermitian matrix A is Hermitian and suppose lambda and mu two distinct Eigen values 

of A (no audio from 21:44 to 21: 50) two distinct Eigen values of A. Now, since lambda 

and mu are Eigen values then let U and V be corresponding Eigen vectors. So, we have 

two distinct Eigen values what we mean is lambda and mu are different.  

There are two different Eigen values we are considering and we are considering the 

corresponding Eigen vectors, what does this mean? The fact that u and v are Eigen 

vectors means u and v are non zero, one and u is an Eigen vector corresponding to 

lambda and v is an Eigen vector corresponding to v. Now, notice that we have already 

shown that the all the Eigen values of the Hermitian matrix must be real and therefore, 

since lambda and mu are considered to the Eigen values of the Hermitian matrix H n 

lambda A lambda and mu must be real. So, note by one lambda and mu are real. Now, 

therefore, we have this two distinct Eigen values, lambda and mu and we have the 

corresponding Eigen vectors U and V, U and V are non zero A u is lambda u and A v is 

u v.  
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Now, this implies let us look at lambda times u v again, this is the same as lambda u v 

because the lambda can be pulled out of the first vector. Now, it is does not matter 

whether in the first factor or in the second factor because it is real, it can be pulled out, 

so, it is lambda u v. Now, lambda U is A u from this and we know that for a Hermitian 

matrix A x comma y is y comma A x, the first fundamental property of Hermitian 

matrices says so, this is u, A v since A is Hermitian.  

Now, u v A v is mu v by this property because v is the Eigen vector corresponding to the 

Eigen value mu. Now, mu has to be pulled out is a constant is a number, it has to be 

pulled out of the second factor, it will come out with the conjugate, but mu is real. So, 

conjugate does not matter so, it will be just mu into u v, since mu is real. So, therefore 

lambda times u v is mu times u v and that says lambda minus mu times u v equal to 0. 

Now, lambda minus mu is a real number u v is a complex number and the product is 0, 

the product of two complex numbers is 0, if and only if, one of them is 0, but lambda 

minus mu cannot be 0 because lambda and mu are distinct and therefore, that says u v 

equal to 0, since lambda is not equal to mu because we are considered two distinct Eigen 

values. Therefore, u is orthogonal to v what this therefore says is, if you take two distinct 

Eigen values, lambda and mu and look at their corresponding Eigen vectors they must be 

orthogonal they must be orthogonal. 
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So, conclusion, this is the second fundamental property of the Eigen values and Eigen 

vectors of Hermitian matrix. So, Eigen vectors corresponding to distinct Eigen values, 

Eigen vectors corresponding to distinct Eigen values of a Hermitian matrix must be 

orthogonal to each other. So, they are nicely structured, the Eigen vectors are nicely 

structured they are orthogonal to each other.  

Now, the real version again is that Eigen vectors corresponding to distinct Eigen values 

of a real symmetric matrix are orthogonal to each other must be orthogonal to each other. 

Now, when I say orthogonal in the real case, we mean the real inner product that is x 

comma y is x 1 y 1 plus x 2 y 2 there is no conjugation because everything is real. So, we 

have now these two fundamental properties all the Eigen values must be real and Eigen 

vectors corresponding to distinct Eigen values must be orthogonal to each other.  
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Now, let us see what does this mean? So, therefore, let us look at A Hermitian matrix H 

n and let us say its characteristic polynomial is lambda minus lambda 1power a 1, 

lambda minus lambda 2 power a 2, lambda minus lambda k power a k where lambda 1, 

lambda k are the distinct Eigen values of A a 1, a 2, a k their algebraic multiplicity, this 

our usual notation, this is how we denote the characteristic polynomial and the distinct 

Eigen value. Now, correspondingly we have the Eigen space the Eigen space 

corresponding to Eigen value lambda j, what is that, that is thus the null space of A 

minus lambda j i.  
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Now, any vectors let us consider j not equal to r, that is we are considering two different 

Eigen values lambda j, lambda r. Suppose, two indices j not equal to r any vector in W j 

is either the 0 vector or if it is not a 0 vector, it must be an Eigen vector corresponding to 

lambda j. Similarly, any vector in W r is either the 0 vector or an Eigen vector 

corresponding to lambda r. Now, if zero vector, zero vector is orthogonal to all the vector 

so, 0 vector is orthogonal to all the vectors in W r, if it is not 0, it is an Eigen vector 

corresponding to lambda j, it will be orthogonal to 0 and it will also be orthogonal to all 

the Eigen vectors corresponding to lambda r because Eigen vectors corresponding to 

distinct Eigen values are orthogonal to each other.  

(Refer Slide Time: 30:41) 

 

Hence, every vector in W j is orthogonal to every vector in W r, if r is not equal to j. So, 

now let us see how how this picture looks like, we have this W 1, we have W 2 all of 

them being orthogonal, the only vector that will be common to two orthogonal things 

will be the 0 vector. So, we have like that and finally, W k so, we have W 1, W 2 etcetera 

and we have W k they are so positioned, that if you pick any one of them every vector 

there is orthogonal to all the other vectors in every other piece. So, w j vectors are 

orthogonal to every vector in W r, if r is not equal to j. So, what this means is W r is 

contained in W j th perp and W j is contained in W r perp, if r is not equal to j. Now, 

what does this lead us to?  
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Now, suppose we find let us look at W j, the dimension of W j is what we called as g j, 

the geometric multiplicity of the lam Eigen value lambda j. Now, we shall at the moment 

(( )) this theorem, we will simply say it can be shown that for any Hermitian matrix, the 

algebraic multiplicity is equal to geometric multiplicity for every Eigen value and hence 

every Hermitian matrix is diagonalizable (no audio from 33:13 to 33:18). So, what does 

this among to therefore, we say the dimension of W j which is g j the algebraic 

multiplicity must be equal to a j. 
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Therefore, if I look at this piece W j, this is the W j its dimension is g j therefore, W j 

will have a basis let us call it as B j, how many vectors it will contain in the dimension is 

a j it will contain a j vectors, let me call it as u 1 1, u j 1, u j 2, u j a j the superscript j 

says that you are looking at the j th Eigen space and the subscript gives the numbering 

ordering of the basis vector. So, any basis of W j will have a j vectors and now, we can 

apply Gram- schmdtz to this to get an orthonormal basis for W j. 
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 So, we can apply Gram- schmdtz to get an orthonormal basis let us now call it as O j has 

phi 1 1 I am sorry it is phi j 1 because now, we are looking at the j th space phi j 1, phi j 

2 and phi j a j. So, we can get an orthonormal basis for W j consisting of a j vectors we 

can do this for j equal to 1, j equal to 2 and j equal to k each one of this Eigen spaces, we 

can construct an orthonormal basis and the number of vectors in this orthonormal basis, 

it exactly equal to the algebraic multiplicity of the Eigen value. Now, if you put all these 

O j’s together we have the union of this O j’s. Now, if you look at let us write this down 

first phi 1 1, this will be the 1 that correspond to the first Eigen value then i will get those 

corresponding to this second Eigen value and so on and finally, those corresponding to 

the k th Eigen value.  

So, this will consist of a 1 plus a 2 plus a k which is n so, this will consist of n vectors. If 

you look at the vectors here, they are all orthonormal, because that is a orthonormal for 

W 1, but across they are all orthogonal to each other because Eigen vectors 



corresponding to distinct Eigen values must be orthogonal to each other and therefore, 

this entire set is an orthonormal set is an orthonormal set and since it contains n vectors, 

it is an orthonormal basis for C n. So, therefore we can construct an orthonormal basis 

consisting of only Eigen vectors of A. 
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 Hence, we have a basis for C n consisting of only Eigen vectors of A. So, what is the 

consequence of this, we now define the matrix U its n by n whose columns are these 

Eigen vectors, what do I mean, we construct the matrix U the the first a 1 columns are 

the Eigen vectors orthonormal Eigen vectors corresponding to the Eigen value lambda 1, 

there are a 1 Eigen vectors we have applied Gram- schmdtz and we got a1 orthonormal 

Eigen vectors corresponding to the Eigen value lambda 1. 

And that we put at the first a 1 columns then we put the Eigen vectors corresponding to 

this second Eigen value, the second Eigen value multiplicity is a 2 and it has a 2 Eigen 

vectors corresponding to it, these orthonormal Eigen vectors are put at the next a 2 

columns and we proceed like this and the last a k columns are the Eigen vectors 

corresponding to the Eigen value lambda k. So, this U matrix is made up of Eigen 

vectors, it is made up of Eigen vectors of A, it is made up of the orthonormal Eigen 

vectors of A, a 1 of them which occupy the first a 1 columns or from the Eigen value 

lambda 1, a 2 of them which occupy the next a 2 columns are the Eigen vectors of 



lambda 2 and so on and so forth and the last a k of them are the Eigen vectors 

corresponding to lambda k.  
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Now, since these Eigen vectors forms an orthonormal set, we see that by our 

construction the columns of U form an orthonormal set by our choice of these Eigen 

vectors, we see that the columns of U form an orthonormal set. Now, why do the 

columns form an orthonormal set, because these are all orthonormal basis for W 1, the 

next a 2 are orthonormal basis for W 2 and these are all orthonormal basis for W k and 

these vectors and these vectors are orthonormal because when r is not equal to j, W j 

vectors are orthogonal to W r vectors.  

So, they form an orthonormal set, if the columns form an orthonormal set, we know that 

the matrix must be unitary that implies, U is a unitary matrix, that is what we saw at the 

beginning of the lecture. So, U is a unitary matrix that is U star U is equal to identity 

right. So, therefore, starting from the Eigen vectors of A, we have constructed a unitary 

matrix, what does this unitary matrix do to us, so that is what we are going to look.  
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Now, what is A times U? Now, U is this matrix A U will be multiplying each column by 

A, but when I multiply these first a 1 columns by a because they are Eigen vectors they 

would be simply multiplied by number lambda 1. Similarly, the next a 2 columns will be 

multiplied by the number lambda 2 and so on. So, we will get the first column will be 

just lambda 1 phi 1 1 and then the a 1 th column will be this then we will start with 

lambda 2 and we will have phi 2 1 lambda 2 phi 2 a 2 and this goes on and we get 

lambda k phi k 1 etcetera lambda k phi k a k because of the fact that every column is an 

Eigen vector corresponding to some Eigen value.  

So, it just gets multiplied by those vectors. So, therefore, we have U star A U is we will 

start with phi 1 1 star and we end up with phi k a k star and this matrix here and when we 

multiply, we get phi 1 star phi 1 is 1 because of orthonormality and therefore, we get 

lambda 1, but phi 1 star phi 2 will be 0, phi 1 star phi 3 will be 0 because of 

orthonormality all the others would be 0.  
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So, we get the diagonal matrix lambda 1 lambda 1 that occurs a 1 times then lambda 2 

lambda 2 occurs a 2 times, lambda 1 occurs a 1 times and then lambda k lambda k will 

occur a k times, this big diagonal matrix n by n we get a 1 plus a 2 plus a n is equal to. 

We will simply write it as D which is diagonal lambda 1 a 1 times, lambda 2 a 2 times 

and so on lambda k a k times had diagonal matrix we will simply denote it by D. So, we 

see that the matrix A is not only diagonalizable, but we have used the unitary matrix for 

diagonalization. 

(Refer Slide Time: 44:07) 

 



Therefore, we say A is unitarily diagonalizable unitarily diagonalizable. So, thus every 

Hermitian matrix is unitarily diagonalizable. Therefore, A belongs to H n implies that is 

A is Hermitian matrix means A is unitarily diagonalizable, that is there exists a unitary 

matrix U such that U star A U equal to a diagonal matrix.  
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The real version of this is the role of unitary is taken over by orthogonal matrix. So, A 

real symmetric implies A is orthogonally diagonalizable is orthogonally diagonalizable 

that is there exists o belonging to R n orthogonal matrix. Now, there is no star so, o 

transpose A o is a diagonal matrix. So, real symmetric matrices are orthogonally 

diagonalizable and complex Hermitian matrices are unitarily diagonalizable.  
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So, therefore, if A is H n we have U star A U is the diagonal matrix D as seen above, so 

unitarily diagonalize, what does that say, if since U star is inverse of U, U star U is 

identity so, U star is invertible and its inverse is U. So, if you take the U star to the right 

hand side, it will go as U star inverse which is U and similarly, U will go to the right 

hand side as U inverse which is U star. So, this will be equal to U D U star. Since U star 

inverse U star inverse is U and U inverse is U star. So, this is a very nice representation 

of a Hermitian matrix.  

This says a Hermitian matrix can be decompose as the product of three matrices the two 

extreme matrices are unitary matrices and therefore, easily invertible and the middle 

matrices is diagonalizable is a diagonal matrix and hence can be treated easily. In other 

words, we have decompose the matrix A into a product of three simple matrices, the 

middle one being diagonal is easy to handle, the remaining two being unitary or easily 

invertible.  
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So, thus we have decomposed A belonging to H n as the product U D U star of three 

simple matrices. The two extreme factors U and U star being unitary are easy to invert 

and the middle factor D the middle factor D being diagonal diagonal matrix is easy to 

analyze. So, the nice splitting of the matrix into simple factors, this is a factorization 

theorem or a product decomposition of a Hermitian matrix into simple matrices A is 

equal to V D U star U is Hermitian, D is diagonal, again U star U is unitary, D is 

diagonal and U star is again unitary.  

So, this is the very simple decomposition of a Hermitian matrix, a more general version 

of this sort of decomposition is what we will see as the singular value decomposition, but 

for Hermitian matrices we have a straight forward decomposition induced by the Eigen 

values and the Eigen vectors, the Eigen vectors constituting the (( )) matrix U and the 

Eigen values constituting the diagonal matrix D. You must notice here, that in the 

decomposition we require U D, U star is known once, U is known, U and D are the two 

required matters, D is known through its Eigen values, because the diagonal entry D is 

the diagonal matrix whose entries are always Eigen values, the diagonal entries are all 

Eigen values, you can notice that here all the entries along the diagonal are Eigen values. 

 Therefore, to construct this U D U, D requires only the Eigen values and the matrix U 

you may recall we have constructed using the Eigen vectors. So, the two ingredients 

required to make this decomposition of the given matrices into product of three simple 



matrices are precisely the Eigen values and the Eigen vectors and that is why the Eigen 

values and the Eigen vectors play an important role in the analysis of a matrix.  
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So, in the case of Hermitian matrices, we can conclude that thus for a Hermitian matrix 

(no audio from 51:40 to 51:47) A, its Eigen values and Eigen vectors provide the de-

product decomposition we have call it, we provide the simple product decomposition A 

equal to U D U star where to construct U we need the Eigen vectors orthonormal Eigen 

vectors. So, we need the orthonormal Eigen vectors of A and to construct D, we need the 

Eigen values and their algebraic multiplicity because I have to put diagonal lambda 1 a 1 

times and therefore, I need multiplicity algebraic multiplicity a 1, a 2, a k etcetera.  
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So, a more general version of such a product decomposition is called the singular valued 

decomposition which is our ultimate goal, we will eventually get to that more general 

version of this singular value of this type of product decomposition. So, thus we have a 

nice decomposition of a matrix A into simple matrices unitary diagonal unitary unitary 

diagonal unitary, the diagonal entries are Eigen values, since A is Hermitian all the Eigen 

values are real.  

So, the diagonal part is a nice simple real diagonal matrix and the other two are unitary, 

anytime we can invert them by just flipping and conjugating them. So, that is the simple 

decomposition, we can also view this decomposition as the sum decomposition, we have 

viewed this whole thing as a product decomposition, we can also viewed this as a sum 

decomposition which is essentially what is known as the spectral theorem for Hermitian 

matrices.  
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Now, what we actually do for that is, we have the basics for C n. So, we will in the next 

lecture, we look at the details of these calculations; we look at what is known as a sum 

decomposition. We have the basis for C n through Eigen vectors and this implies every 

vector in C n can be expanded remember this so called fourier fourier expansion with 

respect to this orthonormal basis with respect to this orthonormal basis. We analyze this 

this expansion carefully to get the sum decomposition and this is what we will look in 

the next lecture. 

 


