
Advanced Matrix Theory and Linear Algebra for Engineers 
Prof. R. Vittal Rao 

Center for Electronics Design and Technology 
Indian Institute of Science, Bangalore 

 
Lecture No. # 32 

Hermitian and Symmetric matrices- Part 1 
 

(Refer Slide Time: 00:20) 

 

In the last lecture, we saw that if A is in C n n, that is, if A is n by n complex matrix, then 

for A to be diagonalizable, for A to be diagonalizable, we need that the algebraic 

multiplicity is equal to the geometric multiplicity for every Eigen value of A. What we 

mean is, that is, if lambda j is an Eigen value of A with algebraic multiplicity a j, then we 

must have n, we must have a j, linearly independent eigenvectors corresponding to 

lambda j. So, depending on the multiplicity of the Eigen value we must have that many 

linearly independent eigenvectors. 
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This is the same as saying, that the dimension of the eigenspace W j corresponding to 

lambda j must be, must be a j, must be a j. So, we need this condition for 

diagonalizablity. 
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And we have seen that there are matrices, there are matrices for which this condition is 

not satisfied, this condition is not satisfied, and hence not diagonalizable. So, there are 

matrices for which the condition is not satisfied, that is, the geometric multiplicity will 

become less than the algebraic multiplicity for some Eigen values and hence, the matrix 



fails to be diagonalizable. Therefore, we have this problem, that given a matrix A, you, 

priory we do not know whether it is going to be diagonalizable or not. We have to look at 

the geometric multiplicity and the algebraic multiplicity, that is, we look whether we get 

enough numbers of eigenvectors to form a basis for the whole space.  
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Now, we are going to look at the class of matrices. We shall now look at the class of 

matrices, which is the sub-class of the entire set of matrices for which always a m equal 

to g m for each Eigen values. So, we are going to look at matrices, a class of matrices. 

Among this whole world of matrices, there is a class of matrices for which this condition 

is always satisfied and hence, diagonalizable. This is the first sub-class of matrices we 

look at. What do you mean by following? We have this whole collection of n by n 

matrices, inside that we are going to look at the sub-class H n. We will define what H n 

is and this sub-class H n. 

You take any matrix A in the sub-class in H n, it will be diagonalizable or for which 

algebraic multiplicity, it will be equal to geometric multiplicity. So, we will call this sub-

class H n, we will explain, what H n is, in short. 
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So, for that we will look at some preliminary ideas, simple calculations, which will give 

us the right notational frame work to work with. So, let us, look at a matrix A, which is n 

by n complex. Then, let us denote it as the entries, as a jk, where j is the row index, 

which goes from 1 to n and k is the column index, which goes from 1 to n. So, we have a 

complex matrix A, whose entries are a jk; a jk denotes the entry in the jth row and the 

kth column and it is a complex number. 
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Now, take any vector u in C n, and then u is of the form, u equal to u 1, u 2, u n, where 

the u j are all complex numbers. Now, if u is a vector in C n, then Au, if you multiply the 

vector by u the matrix A, that is also a vector in C n, because A is n by n and u is n by 1, 

so the product is going to be n by 1; it is also going to be vector in C n. If, you take a 

vector in C n, Au is also going to be in C n. So, we can write Au, as it is 1st component, 

we will denote by Au 1, 2nd component by Au 2 and so on, Au n. 
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Now, how do we get the jth component? A, look at the vector Au, A is untrained by 

multiplying them matrix a 11, a 1n, a 21, a 2n and so on, a n1, a nn with the vector u 1, u 

2 and u n. In order to get the jth component of this product, we have to look at jth row 

and multiply it with the vector u 1, u 2, u n. So, we get the jth component of Au to be a j1 

u 1 plus a j2 u 2 plus extra, a jn u n, which we will write in summation notation as 

summation k equal to 1 to n, a jk u j. So, the j, the component of the product A u, it was 

given by a jk u j. 
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Now, consider two vectors x, y epsilon C n. x is x 1, x 2, x n; y is y 1, y 2, y n. Now, 

applying the above logic we get A x is the matrix and it is component, jth component. By 

the above calculation, in this we replace u by x, we get, that is equal to k equal to 1 to n, 

a j k x j. That is our A xj. 
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If you look at the inner product of A (x, y) by definition, that is summation j equal to 1 to 

n, the jth component of x multiplied by the jth component of y with the conjugate 

because we are dealing with the complex vector space. Now, A xj we have calculated 



here and if we substitute that, that becomes j equal to 1 to n summation k equal to 1 to n, 

a j k x k times y j y. 

Now, we have two sums, one is on the index j and the other is on the index k and both 

are finite sums, and therefore, with an interchange in order of the sum. So, we will take 

the k sum first and then x, this should be x k, the x k comes out, the remaining all are 

dependent on j, so they all go inside as a j k y j y. 
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We can now write this as summation k equal to 1 to n, x k, j equal to 1 to n a jk bar y j, 

this quantity bar. We have taken the conjugate twice and for simple notation we write 

this as summation j equal to 1 to, summation j equal to 1 to n A star k j y j bar. 
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Where A star alpha beta is a beta alpha conjugate, from, from the above definition, for 

any alpha beta between 1 and n. Therefore, this becomes, if you now, I define the matrix 

A star to be the matrix, whose entries are A star alpha beta, which is equal to A beta 

alpha, then this becomes k equal to 1 to n x k A star y k y, which is the same thing as the 

inner product between x and A star. This is explicatively seen, this competition of A x, y 

equal to x, A star y. 

Therefore, what is the conclusion? The conclusion is that if A belongs to C n by n, we 

define A star. How do we obtain as A star? We interchange the row index and the 

column index and then conjugate it. Interchanging the row index and the column index 

be among s to transposing the matrix, so it is A transpose conjugate. 
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So, A star alpha beta is equal to a beta alpha bar. If we now define A star as A transpose 

bar, then A x, y is equal to x, A star y for every x, y in C n. This is a very important 

identity, which will be used repeatedly. 
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In particular, in particular if we take everything real, if A belongs to R n, then there is no 

more conjugation involved. So, A star will be defined as A transpose only. Then, then we 

have A (x, y) is equal to x comma, in place A star we have a transpose A transpose to y 

for every x, y. Now, in R n this two are important observations. For A matrix, very 



important identity A (x, y) equal to x, A star y, that is, if you move A in the inner 

product, from one factor to another factor it moves as a star. Here, A was in the first 

factor, now we wanted it to move to the second factor, it moved as a star. Similarly, if 

has comes back from second to here, will come back again with the star note, that A star 

is equal to A. 
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If the matrix again, transpose once you transpose a conjugate again, you transpose a 

conjugate you get. So, these two identities are going to be very useful identities for us. 

So, let us look at some examples. Let us take a very simple matrix, which is 1 plus i, i, 2, 

3, which is now in C 2 2. So, it is a 2 by 2 matrix, is a complex matrix. 
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Now, what is A star? In this case we have to transpose and conjugate. So, this 

conjugation will make this i, transposition will bring i here and conjugate will make it 

minus i and 2 was there and 3 was here. This is what A star is, suppose x is a vector x 1, 

x 2, which is in C 2, then what is A x? A x is in 1 plus i, i, 2, 3 into x 1, x 2, which is 1 

plus i into x 1 plus i into x 2, 2x 1 plus 3x 2. This is what A x is. So, now, if we take the 

inner product of x with y, the inner product is taken by taking the components of the 

product of the components with the second one coming as a conjugate. 
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So, the first component of A x times the first component of y conjugated plus the second 

component of A x times the second component of y conjugated. We will make a slight 

rejudgement of this, we will write this as x 1, collect all the x 1 terms, which is 1 plus i 

into y 1 bar and x 2 plus and x 1 comes from 2y 2 bar, then we have plus x 2 into i y 1 

bar plus 3y 2 bar. This is what A (x, y) is. 
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Let us compute A star y. A star y equal, A star is the matrix 1 minus i, 2, minus i, 3, so 1 

minus i, 2, minus i, 3. Let us look at this 1 minus i, 2 and minus i, 3 is A star; y is y 1, y 

2. So, if we now take this product, this becomes 1 minus i into y 1 plus 2y 2, minus i into 

y 1 plus 3y 2. And therefore, x, A star y, that is the inner product of x with A star y will 

be the first component of x 1 times the conjugate of the first component of A star y, 

which is 1 plus i into y 1 bar plus 2 into y 2 bar. Similarly, second component of x into 

the conjugate of the second component of y. Now, compare it with A (x, y), which we 

got here and we see, that it is the same as, thus A (x, y) is equal to x, A star y for every x, 

y in C. This is the identity that we have been discussing above. 
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Let us look at another example. Let us take A to be 1, i, 2, minus i. Now, in this case 

what is A transpose? It is 1, i, minus i, 2 and A star is the conjugate of the transpose. So, 

it is 1, i, minus i, 2. We have to conjugate the A transpose to get A star. So, again, what 

is A x? A x is 1, i, minus i, 2, that is, A, x is x 1, x 2. If we now take a product, I get x 1 

plus i x 2 minus i x 1 plus 2 x 2. Now, if I take A (x, y), which is inner product of A x 

with y, I have to take the first component of A x multiplied with the conjugate of the first 

component of y plus second component of A x multiplied by the conjugate of the second 

component of y. 
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When we do this product we rearrange these terms again as before. Collect the x 1 terms, 

I get x 1 into y 1 bar minus i y 2 bar plus x 2 into i y 1 bar plus 2 y 2 bar. Now let us, 

compute x, A star y. First of all, what is A star y? A star y is same as A y because we 

observe here, that A star is equal to A, A star is equal to, is same as A y. 
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So, it is again 1 i minus i 2 into y 1 y 2, which is y 1 plus i y 2 minus i y 1 plus 2 y 2. 

Now, therefore, if i take (x, A star y), the inner product of x with A star y, I am (( )) x 1 

times the first component of, we have to put the first component of A star y with the 

conjugate, so it will be y 1 minus i y 2 y 1 bar minus i y 2 bar plus x 2 into the second 

component of A star y with conjugation i y 1 bar plus 2 y 2 bar, which is precisely what 

we got here for (A x, y) and. Therefore, (A x, y) is equal to x, A star y. In this case, A 

star is… 
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Let us look at another example, the real case. Consider the matrix 1, 2, 3, 4, what is A 

transpose? That is 1, 2, 3, 4, Ax is x 1 plus 2x 2, 3x 1 plus 4x 2, A transpose y is x y 1 

plus 3y 2, 2y 1 plus 4y 2 and therefore, (A x, y). Now, we know, we do not have any 

conjugation because now we are looking for x, y in R n.  
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So, if you now take x, y in R n, all real, then (Ax, y) is first component of Ax into the 

first component of y plus the second component of Ax into the second component of y, 

which we will rearrange again as before, x 1 into y 1 plus 3y 2 plus x 2 into 2y 1 plus 4y 



2. On the other hand, we have x comma A transpose y is equal to x 1 into the first 

component of A transpose y, which is y 1 plus 3 y 2 plus the second component of x into 

the second component of A transpose y. You, you compare these two and be sure, that 

these two are equal and therefore, (Ax, y) is equal to x comma A transpose y for every x 

y in R n. 
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So when we have, so let us again summarize with the examples and… So, first A 

belongs to C n n, we define A star to be transpose the matrix and then conjugate and then 

(Ax, y) is equal to x comma A star y for every x, y (( )). A star is called the Hermitian 

conjugate, is called the Hermitian conjugate of… 
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Then, the second thing is, we observe is A is in R n, then (Ax, y) is equal to x comma A 

transpose y for every x, y in R n. So, now, we observed, that when A star is equal to A in 

this example two in the above, particularly if I look at this identity when A star is equal 

to A, then we get A x equal to (x, Ay), that is, we can freely move A from one factor to 

the other factor without any change. If A star equal to A, when we move this A to be 

second factor, it will still move as A 1 and that makes things work much nice. 

We now make a special name for such matrixes, so we now introduce the notion of a 

Hermitian matrix. A matrix A, which is complex and n by n is set to be Hermitian if A 

star equal to A. So, the conjugate Hermitian conjugate is itself, so it is self conjugate 

matrix; so, it is self conjugate matrix in the sense of Hermitian conjugation, the 

Hermitian conjugation transpose conjugate. If you transpose the conjugate, the matrix, if 

you get back the original matrix, then it is called a Hermitian matrix. 
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For example, if A equal to 1, i, i, 1; A transpose is 1, i, i, 1. Therefore, A star is equal to 

A transpose conjugate is 1, minus i, minus i, 1 and this is not equal to A. 
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And therefore, A is not Hermitian. On the other hand, look at this example, A equal to 1, 

i, minus i, 1, then A transpose is 1 minus i, i, 1, rows are written as columns and columns 

as rows. Therefore, A star, which is the conjugate of A transpose is 1, i, minus i, 1, which 

is equal to A and therefore, A is Hermitian. 
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Therefore, A is Hermitan, if and only if its star is itself. In particular, when we are 

dealing with real matrix is conjugation, is no effect, A star means, is same as transpose. 
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If A belongs to R n and A transpose equal to A, we say, A is a real symmetric matrix. 

Note, that a real symmetric matrix can be thought of, is the complex Hermitian matrix 

because the real numbers can be thought of as complex. So, starring again does not 

affect, A transpose conjugate will still be A. So, note, a real symmetric matrix can be 

thought of also as a complex Hermitian matrix. 
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Now, suppose, A is Hermitian and we denote, we, we say, A is Hermitian if A star is A. 

Therefore, if you look at the diagonal, what does that mean? This mean a jk bar let us, 

using the following notation, correct notation… 
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So, the, the jkth entry of the starred matrix is obtained by the kjth entry of the original 

matrix with conjugate. In particular, if j equal to k, we get the diagonal entries. We get 

the jth for, for the jth diagonal entry, a jj star must be equal to a jj bar. Now, if A is 



Hermitian, a jj star is the same as a jj because A star is equal to A and therefore, a jj bar 

is equal to a jj, which says a jj is real. 
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Therefore, for a Hermitian matrix, all the diagonal entries must be real. The diagonal 

entries of a Hermitian matrix, Hermitan matrix, should all be real. The matrix may be 

complex, but when the matrix has to be Hermitian conjugate, the diagonal entries are 

forced to be real numbers. So, you cannot have a complex Hermitian matrix with 

complex diagonal entries, all the diagonal entries must be real. 
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Now, we shall denote by H n, the set of all n by n complex Hermitian matrices. So what 

is H n? H n is all those matrices in C n n, the complex Hermitian complex matrix is n by 

n such that A star is equal to A. So, this is the collection of all Hermitian matrices. Now, 

it is this class of matrices, which are having a very nice set of properties as for the eigen 

values in eigen vectors are concerned and it is this class, that it will be very useful in all 

our computations and answering many of your questions, that we rise in the beginning of 

the course. 
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So, we shall study this class a little bit more closely. It is first, some simple properties of 

H n of this collection. Look at some simple properties of this collection of matrices. 

First, we have observed, that the moment it is Hermitian, so if A belongs to H n, (Ax, y) 

must be equal to (x, Ay) for every x, y in C n, because A star is equal to A. We had (Ax, 

y) is equal to x comma A star y. But since, A star is equal to (Ax, y) must be equal to x 

comma A star. So, this is the first property, which every matrices in H n possess, that is, 

in an inner product the factor A can be moved from the first to the second without any 

change. 

The second is, as we have observed above, if A belongs to H n, then all diagonal entries 

of A must be real; all diagonal entries of A must be real. 
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Let us now look at the property 1 as in a special situation. So, in 1, if we put x equal to y, 

we get (Ax, x) is equal to (x, Ax) y is equal to x. So, (Ax, y) becomes (Ax, x) and (x, Ay) 

becomes (x, Ax). So, we have in, we have this simple thing when could they, so this is 

true for every x in C n. y is also taken to be equal to x, so that becomes for every x in C 

n. Now, but the right hand side, by the inner product (( )), inner product of a vector with 

itself the conjugate, when the order is reversed, so we have got (Ax, x). So, therefore, 

(Ax, x) is equal to Ax comma x bar. 

A number is equal to its own conjugate means, that number must be real. So, that says, 

(Ax, x) is real for all x in Cn, so this is the third important property. Not only the 

diagonal entries are real, the many things are going to be real for a Hermitian matrix; not 

only the diagonal entries are real. 

We now see, that (Ax, x) is real for all x in C n, whatever x, the x may be complex a, A 

is a complex matrix, only thing we know, it is complex Hermitian matrix. So, there are 

many non-diagonal entries, which are complex, x could be highly complex matrix vector 

and x, if A is a Hermitian, (Ax, x) must be real. All the complexity is gone and 

everything becomes real. So, (Ax, x) is real for all x in R n. It is a very, very important 

property, so which we will be using repeatedly. 



So, we have seen now three properties, this is the first fundamental identity for 

Hermitian matrices (Ax, y) equal to (x, Ay) for all x, y in C n. All diagonal entries must 

be real and (Ax, x) must be real for all x in C n. 
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Suppose, A and B are, A and B are Hermitan matrices, suppose A and B are Hermitian 

matrices, that is, A star equal to A and B star is equal to B, both are Hermitian matrices. 

Suppose, we take two Hermitian matrices and we look at their sum, call that as C. Let C 

be equal to A plus B, the sum of these two matrices. 
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Then, C transpose is A transpose plus B transpose, because the transpose of a sum is the 

sum of the transpose, thus was C transpose conjugate is A transpose conjugate plus B 

transpose conjugate. This is C star and this is A star, this is plus B star, that is, the sum of 

the star is star of the sum. So, C star is equal to A star plus B star. In particular, if A and 

B are Hermitian, this is the same as A plus B because A and B are Hermitians. 
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So, if A and B Hermitian, A star is equal to A and B star is equal to B, but A plus B was 

C, that means, C star is equal to C, that means, C is also Hermitial. So, conclusion is A, 

B are Hermitian, implies their sum is also Hermitian. This sum of Hermitian matrices is a 

Hermitian matrix. 



(Refer Slide Time: 39:24) 

 

However, there is certain, that is the 4th important property. However, there is a slight 

problem as far as com product, scalar multiple on products are concerned. Let us look at 

a Hermitian matrix and take any complex number C. Then, let us define C to be alpha 

times A, that is, the matrix A is multiplied by alpha, which means, every entry is 

multiplied by alpha. So, C transpose is alpha times A transpose and therefore, C 

transpose conjugate is alpha conjugate A transpose conjugate, that is, alpha conjugate A 

star. Now, therefore, C star is equal to alpha conjugate A star. 
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Therefore, C is Hermitian if and only if C star is equal to C, if and only if alpha bar A 

star, that is, the C star must be equal to alpha A, if and only if alpha bar A is equal to 

alpha A, because A star is A. We have assumed that A is in H n. Since A is in H n, A star 

can be replaced by A. So, C will become Hermitian, if and only if alpha bar A equal to 

alpha A. Now, this is satisfied if A is zero matrix. If A is not the zero matrix, then alpha 

must be equal to alpha bar, if and only if A equal to 0 n cross n or alpha is real and 

therefore, if we have a non-zero Hermitian matrix, its scalar multiple is also Hermitian if 

and only if the scalar is real. 
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So, therefore, A belongs to H n, A not equal to 0 n. then, implies alpha A is Hermitian, is 

also in H n if and only if alpha is real. So, this is the scalar multiple of a Hermitian 

matrix, will become Hermitian only if the scalar, which is multiplying is real. This is 

same thing as saying H n. 

The class of all Hermitian matrices is a vector space, not over the field of complex 

numbers, but over R because addition of two Hermitian matrices is Hermitian. So, 

addition no problem, scalar multiple in order, that it be close with respect to scalar 

multiple, we have to take only scalars to be real. That is the problem with R, the 

constraint with respect to scalar multiplication. 
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The next property is look at the product of two. This is the product. Suppose A is a 

Hermitian matrix and B is also a Hermitian matrix. Let us define C to be the product, 

define C to be the product AB. So, we have two Hermitian matrices, we are looking at 

their product. What is C transpose? It is AB transpose, but AB transpose, the transpose 

of the product is the product of this transpose in the reverse order and therefore, C 

transpose conjugate is B transpose conjugate into a transpose conjugate. 
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And this is C star and this is B star and that is A star and that is equal to BA, because B 

and A and B are Hermitian. Since A and B are Hermitian, B star is, B and A star is A. 

Now, therefore C star is equal to C, that is, C will be Hermitian if and only if C star is 

BA, C is AB, that is, if and only if A and B are commutable. Therefore, that is the next 

property. 

Product of two Hermitian n by n matrixes is an n by n Hermitian matrix, Hermitian 

matrix, if and only if the two matrixes commute. These are some of the important 

properties of a, herm, the collection of Hermitian matrix. Let us go over them. 

The first property we have was, that we must have (Ax, y) equal to (x, Ay) for every x, y 

in C n. Then, we must have, that all the diagonal entries must be real. Then, (Ax, x) is 

always real, that is the 3rd property and the 4th property is that the product, the sum of 

the two Hermitial matrixes is Hermitian always and should be the 5th property, the 

number in this problem. The 5th property is that A is Hermitian, then the scalar multiple 

is again Hermitian, if and only if all the scalar is real. And this is the 6th property is 

about the product. The 4th and the 5th properties together give us, that H n is a vector 

space over R. It is not a vector space over C; is not a vector space over C. Then, the 

product of two Hermitian matrixes is again Hermitian if and only if the two matrices is 

commute. 

So, now, we have this fundamental properties of Hermitian matrices and we again stress 

the two of the most important properties, which will repeatedly use is the fact, that (Ax, 

y) equal to (x, Ay) for all x, y and (Ax, x) is real for all x. This is a, these all are two 

characteristic properties of Hermitian matrixes (Ax, y) equal to (x, Ay) for all x, y and 

(Ax, x) is real. 

So, now, we are going to look at this class of matrices, which is closed and under 

addition, which is closed and real scalar multiplication, which is not closed under 

multiplication because the product of the two Hermitian matrices need not be a 

Hermitian matrices. The product becomes Hermitian if and only if the two matrices 

commute with each other. Commutatively is an important property of matrices, which 

has a lot of things to say about between the two matrices what happens. 
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The class H n of Hermitian matrices exhibit nice Eigen properties. That is the reason 

why we look at this and deal with these matrices so very often because as for this Eigen 

properties, Eigen values, Eigen vector properties and their structure, they are very nicely 

built-in, which makes them automatically diagonalizable, not only diagonalizable, but 

nicely diagonalizable. 
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So, in this context, before we get to study the Eigen properties of these matrices, we shall 

introduce certain notations and terminologies. Let us say, U is a matrix whose columns 



are phi 1, phi 2, phi n. So, U is a matrix, therefore phi j belongs to C n. Each column is n 

component vector. So, we have a matrix U whose columns are phi 1, phi 2, phi n and 

suppose, what does this mean? This means, that phi j, phi k are orthogonal to each other 

and each vector has length one, which means phi j are ortho-normal vector, that is, phi 1, 

phi 2, phi n are ortho-normal vectors. So, a matrix U in which the column forms ortho-

normal set of vectors. 
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Then, we have U star is transpose conjugate, so it will be phi 1 star, phi 2 star, phi n star 

and when we multiply U star and U we get phi 1 star, phi 2 star, phi n star, that is, U star 

into U is phi 1, phi 2, phi n. We now multiply, first we get phi 1 star, phi 1, which is 1 

because phi 1 star, phi 1 is the inner product of phi 1 with phi 1. 
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So, that is 1, phi 1 star, phi 2 is 0 because phi 1 and phi 2 are orthogonal and we go on 

getting 0. And in the second row we get phi 2 star, phi 1, which is 0 again because the 

inner product within phi 2 and phi 1 is 0, phi 2 star, phi 2 is 1, again we get this. So, we 

see, that we get the matrix I n by n, which means U star is the inverse of U and y (( )). 
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Therefore, U star U equal to identity I n by n, hence U star is equal to U inverse and U is 

this U star inverse. Any matrix, which has this property, is called a unitary matrix. So, A 



complex matrix U in C n by n, is said to be is the definition, is said to be a unitary 

matrix. 

If U star U equal to I and since U and U star become inverses of each other, this is the 

same as the (( )) U star. That is, U star is equal to U inverse and U star inverse is equal to 

U, then we say it is a unitary matrix. We see, that if the columns are ortho-normal 

vectors, and then automatically U is a unitary matrix. In the real case, we have to replay, 

there is no conjugation, so U star is same as the transpose. 

(Refer Slide Time: 52:51) 

 

So, we have, we define A, a matrix, let us call it as O, let us use a different symbol, let us 

put this O belonging to R n is said to be a real orthogonal matrix. If O transpose O is 

equal to identity n cross n, that is O transpose is O inverse and O transpose inverse is 

equal to O. So, in the real case, we have an orthogonal matrix notion and the complex 

case, we have the unitary matrix notation.  

The commonality is, that if you are in the unitary case in the complex situation, that 

columns form an ortho-normal set of vectors. In the real case, when we are having an 

orthogonal matrix with real in a product, the columns form an orthogonal matrix. So, 

now, we are going to look at the Eigen properties of H n, this is the most convenient 

class of matrices for which the Eigen properties are very nice and this will form the 

subject matter for the next lecture. 


