Advanced Matrix Theory and Linear Algebra for Engineers
Prof. R. Vittal Rao
Department of Electronics Design and Technology
Indian Institute of Science, Bangalore

Module No. # 08
Lecture No. # 30
Diagonalization — Part 3

In the last lecture, we found that if A is the matrix, which we treat it may be a real

matrix, but we still take it as a complex matrix.
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Suppose, A is the (()) then the characters polynomial C A lambda is a polynomial, is a
monic polynomial of degree n, with coefficient in C. And it is defined be, the
determining of lambda | minus A, and the Eigen values of A, which are now allowed to

be complex also are precisely the roots of this polynomial of this polynomial C A
lambda.
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The again recall, but if A is a real matrix, then the complex roots of C A lambda must

occur in conjugate pairs. And since, the C A lambda the polynomial of degree n.
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Then the fundamental theorem of algebra is that the fundamental theorem of algebra
gives us that, C A lambda will have n roots in C, some of them may be repeated, may or

may not be, but the reputation is allowed, some of them may be repeated.
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So, suppose the k distinct roots, suppose lambda 1, lambda 2, lambda k are the distinct

root of C A lambda with lambda 1 repeating a 1 times.
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Lambda 2 repeating a 2 times and so on, lambda k repeating a k times, what does this

mean?
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This means, the polynomial C A lambda can now we a factor, at the root lambda 1 in
appearing a 1 times, so lambda minus lambda 1 to the power of a 1 is the factor, lambda
minus lambda 2 to the power of a 2 is the factor, lambda minus lambda k to the power of
a k is the factor. And this exact all the factors, because lambda 1, lambda 2, lambda k are
the only roots, and since the polynomial of degree and n roots, where we have a 1 plus a

2 plus a k is equal to n.

And since lambda 1 is the roots, lambda minus lambda 1 must be a factor of C A lambda,
so a 1 must greater than or equal to 1, a 2 must be greater than equal to 1, a k must be
greater than or equal to 1. Therefore, if the lambda 1, lambda 2, lambda k are the distinct
roots, and the multiplicity are a 1, a 2, a k are the reputation a 1, a 2, a k, then the

characteristics polynomial has the standard factorization.

And this lambda 1, lambda 2, lambda k are now distinct Eigen values, they are the
distinct Eigen values of A, and this reputation are called the algebraic multiplicity of this
Eigen values, a 1, a 2, a k are called the algebraic multiplicity. That is the multiplicity
root of the polynomial, algebraic multiplicity of lambda 1, lambda 2, and lambda k

respectively.

So, therefore, given the matrix A we have our complete picture of this Eigen values, we
first construct the characteristics polynomial. Then we find the distinct roots, then we

find the multiplicity, then we have all the Eigen values, lambda 1 will be an Eigen value



of (()) k 1 times, lambda 2 would be an Eigen values occurring a 2 times, lambda k will
be an Eigen value occurring a k times. a 1 plus a 2 plus a k will be n and each one of the
(() greater than or equal to 1. So, this is the standard structure of characteristics
polynomial that we will (()) consider. So, will follow the notation whenever the life C A
lambda in this form, the really mean that this are lambda 1, lambda 2, lambda k are
distinct and this are the multiplicity and so, and so forth. This is the standard notation

that will follow from no what, let look at some symbols examples.
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This are the same example, that we have seen before in this context, will now again look
at it, let us take the matrix A to be 1 minus 3 2 minus 2 0 2 1 minus 1 2. In the last
lecture we found that C A lambda is lambda minus 4 into lambda minus 2 into lambda
plus 2. So, what are the Eigen values here, lambda 1 equal to 4, lambda 2 equal to 2,
lambda 3 equal to minus 2, and multiplicity of 4 is 1, because the power lambda minus 4
to the power of 1 is the factorization. Similarly, the algebraic multiplicity of lambda 2 is

1 and algebra multiplicity lambda 3 is 1.
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So, this distinct Eigen value values are 4 2 minus 2, so the distinct Eigen values of A or
4, 2, minus 2, each having algebraic multiplicity 1, each having algebraic multiplicity
from now 1, we will write a m for algebraic multiplicity 1, so each us algebraic

multiplicity 1.
(Refer Slide Time: 08:32)
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Example

Let us look at another example, A to be 3 minus 1 1, minus 1 31, 0 0 4, in the last lecture
again we found that the characteristics polynomial was lambda minus 4 square into

lambda minus 2. Now, we find that there are 2 distinct Eigen values, lambda on equal to



4 and lambda 2 equal to 2, and the multiplicity of the Eigen value is 4 is 2, because
lambda minus 4 to the power of 2, and the multiplicity of the Eigen value lambda 2 is 1.
So, thus we have 2 distinct Eigen value here, one of the one of them has algebraic
multiplicity 2 and the other one algebraic multiplicity 1.
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Let us look at another example, a simple example A equal to 0 1, 0 1 we treat all these as

complex matrixes is remember.
(Refer Slide Time: 09:45)
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In this case we have the C A lambda between the determine the lambda I minus A, which
is lambda minus 1 0 lambda, which is lambda square. And therefore, there is only on
Eigen value lambda 1 is 0, and it is multiplicity is 2. So, here is an example, there we
have only 1 Eigen value and this multiplicity is 2, algebraic multiplicity is 2.
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Another example simple again, which we are seen before, 0 minus 1, 1 0, we have
characteristics polynomial, as we saw in the last lecture is lambda square plus 1, which
can factor as lambda lambda plus i into lambda minus i. We find now, even through the

matrix is real; we end up with complex root.
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The 2 roots are the 2 Eigen values i and minus i, wrote they are in the conjugate text,

because the matrix is real, whenever the complex roots occur, they must occur in

conjugate pairs. In the algebraic multiplicity of the Eigen values i is 1, and Eigen value

minus i is 1, so thus we have to complex roots both algebraic multiplicity 1 and 1 (()).
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So, here note A is real, Eigen value is complex occur in conjugate pairs, so the Eigen

value occur in conjugate pair. Whenever, we are matrix real matrix and it has a conjugate

it has the Eigen value, which is complex, the complex Eigen value must always appear in



conjugate pairs. So, now we have a fair idea of the Eigen values, remember such for

answer to the question of the diagnosable, depending finding this Eigen pair n of there.

Now, in the Eigen pair, the pair two things involve, the first part of the pair is number,
which is the Eigen value; now we are seen the analysis of Eigen value, in order to such
for this Eigen values, you construct the characteristic polynomial, which determine

lambda n minus a.

Then we go find it roots, then including the multiplicity they are provide you are n Eigen
value that you are seeking part, may be this Eigen value are complex, and the matrix is
real, and if the by chance it by complex Eigen values, they will at occur in conjugate
pairs. So, now having got fair idea of this Eigen values, we now go and look at what and

where we should such for Eigen vectors. So, our next search or next analysis will be the

Eigen vectors search. So, let us start with the matrix A, which may real or complex, so
general we write in C n n, it could be real also, because any real matrix (()) of complex

matrix, so consider n the n matrix.
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And look at its characteristics polynomial, as the explain above, if lambda 1, lambda 2
lambda k are the distinct roots with algebraic multiplicity a 1, a 2, a k, then the
characteristic polynomial can be factor of this. So, let the characteristic polynomial, this

where lambda 1, lambda 2, lambda k are the distinct Eigen values. Now, with algebraic



multiplicity, will write a m for algebraic multiplicity, respectively usa 1, a 2, a k, now all
are search for Eigen vector should be, to find Eigen vector for each one of this Eigen

values.
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Now, let us consider any one of them, so let lambda by j be one of the Eigen value, now
what does it mean to say that, it is an Eigen value, it means it should have a vector u
associated with, which is different from 0 for that A u is lambda j u. This means, there
excites u not equal to theta m such that, A u equal to lambda j u, what is mean by saying
that something is Eigen value, because it is an Eigen value means, determine of lambda j

minus a is the 0, the determine 0 lambda j minus a is not in (()).

And therefore, this homogenous system must have a (()) real solution, all this we have
specify previous lecture. So, therefore, there is the vector u, it is different O for that A u
equal to lambda j u, this means the null space A minus lambda j I this matrix, A isan n
by n matrix, | is the n by n matrix. And therefore, A minus lambda j I is the n by n
matrix, the null space of the n by n matrix A minus lambda j | contains a non 0 vector u;
this means the null space is not prevent, let us denote by W j, so let W j the null space of

A minus lambda j I.



(Refer Slide Time: 16:34)

What does this mean, this consists of all those vectors in C n such that, A x minus
lambda j x equal to theta n, that is the set of all vectors in C n such that, A x equal to j x.
And the important thing is that this W j has a non 0 vector u and therefore, W j is non
trivial, dimension of the W j is the greater than or equal to 1.
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W j is the non trivial, because u is not equal to theta m u belongs to W each other, the u
that we observed here, the excite the u that A u equal to lambda j u. Now, W j is not

prevail and therefore, dimension of W j is greater than or equal to 1, this W j is called the



Eigen space, corresponding to the Eigen value lambda j u. So, W j is called the Eigen
space corresponding to the Eigen value lambda j; if you look at W j it contains, because
is the sub space, the null space of the any matrix sub space, and because it has sub space
contain zero vector, that we are seen that will contain the vector non zero also, every non

zero vector in W j is an Eigen vector corresponding to lambda j.

(Refer Slide Time: 18:31)

Every non zero vector in W j is an Eigen vector corresponding to the Eigen value lambda
j. So, now we have for every Eigen value a corresponding Eigen space called W j, and
this Eigen space every non zero vector, in this Eigen space is an Eigen vector
corresponding to W j. And dimension of W j is called the geometric multiplicity

geometric multiplicity of the Eigen value lambda j and is denoted by g j.
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So, g j is the dimension know W j, now W j contain non zero vector, we are observed
above the W, the dimension of W j is greater than or equal to 1, so g j is greater than or
equal to 1 for every Eigen value lambda j. Will denote the geometric multiplicity from
know on has g m for a m will denote algebra multiplicity, g m will mean geometric

multiplicity.

So, put every Eigen value now, we have two numbers, two integer, positive integer
associated one is a j, which is algebraic multiplicity, it is multiplicity of the root of the
characteristics polynomial. And the g j, which is geometric multiplicity, it is dimension

of the Eigen space corresponding to Eigen value lambda j.



(Refer Slide Time: 20:55)

So, therefore, if you have Eigen value, lambda j corresponding to that we have algebraic
multiplicity a j, corresponding to that also have geometric multiplicity g j, what we know
is a j is greater than or equal to 1, because we must appear at least 1 of root the
characteristics polynomial. What we are observe now, g j is greater than or equal to 1,

what we also had was the some of all this multiplicity has root must add up to n.

a1l plusa 2 plusakn, we do not know what our g 1 plus g 2 plus g k is equal to n, all the
know no so for, the g j is must be greater than or equal to n, greater than or equal to 1,
each 1 of them must be at least of dimension one. Now, the question is at the movement

we make the remark.
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We will prove this statement little later, we will need a little more material for that at to
be develop, but we shall now observe, it can be shown of the movement that not prove it,
we will prove it little later. It can be shown that for every Eigen values lambda j of A, the
geometric multiplicity the corresponding to lambda j, we know it is at least 1, we are just
observe that g j is grater than or equal to 1, so is less than or equal to g j, and this will be

at most the algebraic multiplicity.

For j equal to 1, 2 k, we are assuming the lambda 1, lambda 2, lambda k for the distinct
Eigen value, a 1, a 2, a k, are the algebraic multiplicity, g 1, g 2, g k, are the geometric
multiplicity. Then any Eigen value, the geometric multiplicity is at least 1 at most the
algebraic multiplicity, at the movement we are not going to prove the statement, we
know this part that 1 is less than or equal to g j, the part that g j less than or equal a j, we
shall look at the (()).
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Let us now, look at some examples (No audio from 23:41 to 23:50), take the matrix A
this is again we keep look at the same example, which we seen before minus 2 0 2, 1

minus 1 3.

(Refer Slide Time: 24:05)
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Now, what we have seen in before, that the characteristic polynomial is lambda minus 4
into minus 2 into lambda plus 2. And therefore, there are three Eigen values lambda 1

equal to 4 with algebraic multiplicity 1, lambda 2 equal to 2 with algebraic multiplicity 1,



lambda 3 equal to minus 2 with the algebraic multiplicity 1; these are the three distinct

Eigen values.

(Refer Slide Time: 24:42)
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Now, what are the Eigen spaces, the first one W 1 is the null space of A minus lambda 1
I, which is the null space of a minus 4 I. Now, what let us find this out, so what is A

minus 4 I, A minus 4 | from the matrix A in the diagonal, we have to subtract minus 4.

Then we do that, we get the matrix A minus 4 I as minus 3 minus 3 3, minus 2 minus 4 2,
1 minus 1 1, that is you take this matrix A and subtract 4 from the diagonal, because
taking minus 4 I, this diagonal become minus 3, this diagonal become 0, the third
diagonal will become minus 1 third diagonal become minus 1, you call you subtract a 4

from it.
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And if we solve the null space A minus 4 | x equal to theta 3, we get W 1 consists of all
vectors of the form alpha in to 1 0 1, said that alpha belongs to R. Therefore, 1 0 1 is the
basis for W 1 and therefore, dimension of W 1 is 1, and that is what the geometric matrix
g s. So, the geometric multiplicity of the Eigen value is 1, and move that g 1 must be at
least 1, because we said the g is greater than or equal to 1 in the also (()) the g j cannot be
more a j, in this case a 1 is 1. So, it is cannot be more than 1, it cannot be less than 1 and
therefore, it has turned out to the 1.

(Refer Slide Time: 27:09)
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Similarly, W 2 if the null space of A minus lambda 2 I, which is the null space of A

minus 2 I.
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Now, again we have subtract 2 from the diagonal, and so A minus 2 | again we take the
matrix A we had here, and subtract 2 from the diagonal, this is the matrix A, minus 2 |
we have to subtract 2 from the diagonal, you get the matrix 1 minus 1 minus 3 3, minus 2
minus 2 2, 1 minus 1 1, and we solve the system now, A minus 2 | x equal to theta 3
(Refer Slide Time: 27:45).

(Refer Slide Time: 28:11)
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Where a minus 2 | is this, you get the W 2 consists of all vectors of form betainto 0 1 1
where beta belongs to R. And therefore, 0 1 1 is a basis for W 2 therefore, g 2 which is
dimension of W 2 this 1, because there is basis consists exactly one vector.

(Refer Slide Time: 28:42)
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Finally, we find W 3 which is the null space of A plus 2 I, because it is A plus A minus
lambda 3 I, lambda 3 is minus 2, so we all A plus 2 I, so A plus 2 | again with the given
matrix, it turns out to be, we have to just add 2 to the diagonal, you get this matrix. And

therefore, we want to solve A plus 2 | x equal to theta 3, where A plus 2 | this matrix.

(Refer Slide Time: 29:26)




And when we solve this, we get W 3 to be all the solution (()) form gamma into 0 1 of
the 1 1 0 gamma belongs to C or r since, we are dealing with r, we can take it us real
number also. And therefore, dimension of W 3 is 1, because 0 1 1 0 is the basis, for W 3
and therefore, g 3 equal to 1.

(Refer Slide Time: 29:58)
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So, in this case, we have the Eigen values 4 2 and minus 2, their algebraic multiplicity 1
1 1, and the geometric multiplicity 1 1 1. So, 3 Eigen values each one of them as

algebraic geometric multiplicity equal to 1.

(Refer Slide Time: 30:30)
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Let us now look at another example, A 3 minus 1 1, minus 1 3 1 and 0 1 4, this is again
the matrix (()) we consider in the last lecture. And we found, that the characteristic

polynomial was lambda minus 4 squares into lambda minus 2.

(Refer Slide Time: 30:58)
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And therefore, there the two distinct Eigen value, lambda 1 equal to 4, lambda 2 equal to
2, but the algebraic multiplicity as 2 and 1 respect, lambda minus 4 square therefore, the
algebraic multiplicity is 2. So, now let us find the Eigen space W 1 is the null space of A
minus 4 1. So, you have to subtract 4 from the diagonal, and when we do that you get W
1.
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Let us first write a minus 4 | is subtract from the matrix A fore along the diagonal, so get
alone the diagonal minus 1 minus 1 and 0, so the matrix becomes minus 1 minus 1 1,
minus 1 minus 1 1, 0 0 0. And then we find that, W 1 if you solve A minus 4 | x equal to
theta 3, which is the homogenous equation, which can easily solve, we find that the all
the solution can be express in the form, alpha beta alpha plus beta, where alpha and beta

they have to see.

And now, we findthat 1 0 1, and 0 1 1 is basis for W to 1, 1 0 1 is obtain taking the alpha
equal to 1, beta equal to 0, 0 1 1 is obtain by taking alpha equal to 0 and beta equal to 1.
Since, there is the basis consisting of two vectors dimensionally W 2 is 2 therefore; g 2 is
glis2.
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The next Eigen value the next Eigen gives the the Eigen space this is the null space of A
minus lambda 2 I, so the lambda 2 is 2 this is the same as null space of A minus 2 I.
Now, we have subtract 2 from the diagonal A minus 2 | is the matrix, 1 minus 1 1, minus
111,002, now if we solve this we usually see that the third equation gives x 3 equal to
0, then the first 2 give x 1 equal to x 2.
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So, therefore, if you solve this we have solve this we get W to be the set of all vectors,

which are of the form beta in to 1 one 0 beta belongs to c.
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And therefore, 1 1 0 is the basis for W 2.

(Refer Slide Time: 34:10)

e Bl e Gwet Ao Took Mep
F ALY & - " ;& F
EEEEEEN

And hence, dimension of W 2 is 1, because we have a basis consisting of 1 vector and
therefore, g 2 which is the dimension of W 2, which is geometric multiplicity Eigen
value lambda 2 is 1. So, in this case we have 2 Eigen values are 4 and 2, the algebraic
multiplicity, the Eigen value 4 as algebraic multiplicity 2; the Eigen value 2 as the
algebraic multiplicity 1, the geometric multiplicity where again 2 and 1; so we have this

sample.
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Let us now look at, one more simple example to illustrate, what we are going adding

towards examples, consider the matrix A2 02 minus 1 3 1 minus 1 1 5.

(Refer Slide Time: 34:14)

If we now find the characteristic polynomial, it is determine of lambda I minus A, which
is lambda minus 2 0 minus 2 1 lambda minus 3 minus 1 one minus 1 lambda minus 5,

when we expand this determinant, we get lambda minus 4 square into lambda minus 1

(0)-
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Now, if you look at Eigen values, lambda 1 is 4 is multiplicity 2 lambda 2 is 2 and the
multiplicity is 1, the multiplicity is 2 here for lambda 1 equal to 4, because lambda minus
4 square term. So, the root lambda equal to 4 appears twice therefore, algebraic

multiplicity is 2.
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Now, let us again find Eigen spaces as before W 1 will be the null space of A minus
lambda 1 I, which is null space of a minus 4 1. That now, what is A minus 4 I, we must

remove 4 from the diagonal entry of the given matrix, the given matrix is here, so if you



subtract 4 from the diagonal, the diagonal change 2 minus 2 minus 1 and 1. So, we get A

minus 4 1 as minus 2 0 2 minus 1 minus 1 1, then minus 1 1 (Refer Slide Time: 36:48).
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So, if you now solve, the system A minus 4 | x equal to theta 3 we find that, W 1 is
consists of all vectors of the form and therefore, 1 0 1 is a basis for W 1.

(Refer Slide Time: 37:39)
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And therefore, the dimension of W 1 is occurring 1 and therefore, g 1 is 1, the geometric
multiplicity, the dimensional W 1 and therefore, it is equal to 1. Let us now find W 2, the

null space is the Eigen space, corresponding to the Eigen value lambda 2, which is the



null space A minus lambda 2 I, since the lambda 2 is 2, this is the null space of A minus
2 1. Now, | have to subtract to find A minus 2 I, have to subtract 2 from the diagonal of

the diagonal given matrix, when | do that I get this matrix.
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And then now, we solve for the system A minus 2 | x equal to teta 3 to get W 2, as the

set of all vectors of the form beta in to 1 1 0, where beta can (()).

(Refer Slide Time: 38:42)
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Now, 1 1 0 is a basis for W 2 therefore, dimension W 2 is 1, that means the geometric

multiplicity is 1, because geometric multiplicity is the dimension of the null space.
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So, what we have in this example, we have in this example, the Eigen values as 4 and 2,
the 2 Eigen value vector 4 and 2; their algebraic multiplicity 2 and 1, and the geometric
multiplicity all where 1 and 1. Now, where is an example, where one of the Eigen value
namely, the Eigen value 4 has algebraic multiplicity 2, but the geometric multiplicity

which is smaller than this.

This is what we said that the always have, the geometric multiplicity is either equal to the
algebraic multiplicity are smaller than the algebraic multiplicity. In fact, the entire
question of the A is diagnosable or not dependents on, weather geometric multiplicity
falls short at any stage, if it falls short of the algebraic multiplicity, we will end of the
difficulty of the diagnosable. In fact, we put all shorts even for 1 Eigen value even by 1,
suppose, there are 4 Eigen value, for 3 Eigen value the algebraic multiplicity is equal to
geometrically multiplicity.

But, for 1 of the Eigen value, the geometric multiplicity is 1 just less than algebraic
multiplicity then (()) will be fake will see like facts will be later. So, the relationship
between the geometric multiplicity and algebraic multiplicity, we know that both are at
least 1, the geometric multiplicity at most this algebraic multiplicity; it can never be
more than, we have not prove it, we will prove it little later. Now, there is one more

property, did will take now, which will not prove, we will again prove this later.
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Remark, suppose lambda 1, lambda 2, lambda r are distinct Eigen values some of the, we
may not later all of them, some of the distinct Eigen values of A and pi 1, pi 2, pi r are

corresponding Eigen vectors.
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What does that mean, this means pi j are not 0 and A pi j is equal to lambda j pi j for j
equal to 1, 2, so we are considering some r distinct Eigen values and we are looking at

Eigen vectors corresponding to them. Then we can show again at the movement we are



not going to prove it, we shall prove it every later, we can show that pi 1, pi 2, pi r are

linearly independent.
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What is that mean, it can be simply state at that Eigen vectors corresponding to distinct

Eigen values are linearly independent. So, in short what we are claiming is this Eigen
vector, corresponding to distinct Eigen values are linearly independent Eigen vector
corresponding distinct Eigen values these are linearly independent, now this is what you

going help us to see whether, we are going to have (()) are not.
(Refer Slide Time: 43:30)
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So, now let us case this simplest case, why we will see why this is simplest case, the
simplest case is A is complex matrix, we are the characteristics polynomial lambda
minus lambda 1 to the power of a 1 lambda minus lambda 2 to the power of a 2 lambda
minus lambda k to the power of a k, with the usual notation, that lambda 1 lambda 2

lambda are the distinct Eigen values, a 1, a 2, a k are the algebraic multiplicity is.

And then W j to be the Eigen space corresponding to Eigen value lambda j, what is this,
is nothing but, the null space of the matrix A minus lambda j I, so even the matrix A, we
have use ingredients, and g j the algebraic multiplicity of the geometric multiplicity is

thus the dimension of W j.
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So, we know 1 less than are equal to g j less than are equal to a j, we have accepted, we
have not prove it, but we will say we prove it later, the geometric multiplicity will be
always less than are equal to 0. So, suppose g j is equal to a j for every Eigen value
lambda j that is the algebraic multiplicity is the same of the geometric multiplicity for

every Eigen value.
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Then we have therefore, g 1 plus g 2 plus g k is the same asa 1 plusa 2 plusak, (()) al

plus a 2 plus a k is (()) n, so how does it help us.
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So, now look at this, we have this sales space (()) which is C nand W j is we will see,
here we will the sub space. Now, the dimension of W j is equal to g j, what is the
dimension W j is equal to g j mean, the dimension of W j is equal to g j means, that we

can find a basis for W j consisting of g j vectors.
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So, let us first g j is equal to dimension of W j, but we have assuming implies a j equal to
dimension W j, because we have assume a j equal to g j for every lambda j. Since, we are
assuming the geometric multiplicity is equal to algebraic multiplicity for every Eigen
value we have, but the dimension W j if a j.
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This means, we can find a basis consisting of g j vectors, which is the same as a j vector,
g j equal to a j vector, g j equal to a j vector for W j. Say, let us call them us pi j 1, pij 2,

pi j g j; now we super script now the script the j tells as that it, we are talking about the j



th Eigen space and subscript tells will the Eigen value Eigen vector numbering, | basis
vector numbering, there are a j vector basis, so there are 1 2 3 a j subscript and super

script j, say this are all basis vectors for W j.
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Now, we observe that every non 0 vector in W j is an Eigen vector for a corresponding to
the Eigen value lambda j, and this pi 1, pi 2, pi a j are non 0 vector, because the form a
basis and there for must be Eigen vector, these are all the Eigen vector corresponding to
the Eigen value lambda j. And therefore, lambda j pi j 1 is an Eigen pair, lambda j pi j 2

is an Eigen pair, lambda j pi j a j is an Eigen pair, gives as a j Eigen pairs for A.

So, therefore, the sub space W j, the Eigen space corresponding to the lambda j is already
generated a j Eigen pairs. Notice that the vector pi 1, pi 2, pi j appearing in this Eigen
pair are already linearly independent, because they forming basis for W j, note pi j 1

etcetera, pi j a j are linearly independent.
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So, thus we have W j alone gives rises to a j Eigen vectors, so we have W 1 gives rise to
a 1 Eigen pairs, W 2 gives rise to a 2 Eigen pairs and so on, W k gives rise to a k Eigen
pairs. Now, the Eigen vector appearing in the Eigen linearly independent, the Eigen
vector appearing in the these are linearly independent, the Eigen vector appear in the
these are linearly independent. But, we do not know weather, the Eigen vector appearing
in this to this gather are linearly independent; suppose they are then got a 1 plus a 2 plus

a k which is n Eigen pair and you would have diagonalizable.
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If, we can show that, which we already claim that is true, as claim before, that Eigen
vectors corresponding to distinct Eigen values are linearly independent. Then these will
give to gather, when | say this and this will give us to gather a 1 plus a 2 plus a k equal to

n Eigen pair.
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in which, all the Eigen vector involved linearly independent, and thus we would have
had n Eigen pair as we are looking for, and hence A will be diagonalizable. Therefore,
we have shown that, if we can show what, Eigen vectors corresponding to distinct Eigen
values are linearly independent number 1. And number 2, if we assume, that the
geometric multiplicity is equal to the algebraic multiplicity for every Eigen value, and

then A is diagonalizable.
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So, let us what is the conclusion therefore, let us summaries all other discursion, include
conclusion suppose, we have matrix A for which, the geometric multiplicity is equal to
algebraic multiplicity for every Eigen value, implies A has n Eigen pairs, in which all
Eigen vectors are linearly independent, implies A is diagonalizable, but this was
provided the following holds.
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Eigen vectors corresponding to distinct Eigen values are linearly independent. So, this is

an important property, which we have to prove, if we can prove this property, then what



we are observe is that, if the geometric multiplicity is equal to algebraic multiplicity, for

every Eigen value, then the matrix is necessarily diagonalizable.
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Now, let us look at the very special case, before we do that (()) therefore, this property
that we are listed here is an important property, which we have prove and we shall look
at the property in the next lecture. But, now let us look at a very special case a very
special case is A has n distinct Eigen values, that is all the Eigen values are distinct. So,
A has n distinct Eigen value and in that case, we have A equal to lambda minus lambda 1

lambda minus lambda 2 into lambda minus lambda n.
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And therefore, the algebraic multiplicity of lambda j is equal to 1, but since the
geometric multiplicity has to be at least 1, and it cannot be more than geometric,
algebraic multiplicity, the also get this is equal to the geometric multiplicity of lambda j.
And since, a m equal to g m and for every lambda j, we have A is diagonalizable, and
therefore, a special case is that if matrix A has n distinct Eigen value, then the matrix A

is necessarily diagonalizable (Refer Slide Time: 56:38).

And as we observed this is the crucial point, that we have to now look at, whether the
Eigen vector corresponding to the distinct Eigen value as linearly independent, if you can
prove it, we have a achieve the long go namely. In the case where the geometric
multiplicity is equal to algebraic multiplicity, for every Eigen value to be guarantee the
diagonalizable. We will further see details of the diagonalizable, once this property is
prove, and that will be the goal for our next lecture.



