
Advanced Matrix Theory and Linear Algebra for Engineers 
Prof. R. Vittal Rao 

Department of Electronics Design and Technology 
Indian Institute of Science, Bangalore 

 
Lecture No. # 29 

Diagonalization – Part 2 
 

(Refer Slide Time: 00:23) 

 

We have been looking at the notion of diagonalizability of a matrix A in R n cross n that 

is we are looked at a matrix A, which is n by n and all is entities are real, we are looking 

at the notion of the diagonalizability of that matrix. Become the crucial thing for 

answering this question is the notion of Eigen pairs. When we say Eigen pair lambda phi, 

lambda is a real number, and phi is a vector which has n component such that, A phi 

equal to lambda phi. Then we say lambda phi is an Eigen pair, lambda is called Eigen 

value, sometimes called characteristic value also, and phi is called Eigen vector 

corresponding to lambda. And here the phi beyond those want it to be non zero, because 

otherwise this equation a phi equal to lambda phi will have solution 0 solution for any 

lambda. 
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So, we are looking for those lambdas for which there is non zero solution, such a pair 

will be called an Eigen pair. For diagonalizability of A what we found was that we need 

n Eigen pairs with A is n by n matrix in order to diagonalize a we need n Eigen pair 

lambda 1 pi 1, lambda 2 pi 2, and so on lambda n pi n; such that, pi 1, pi, 2 pi n are 

linearly independent. The Eigen vectors appearing in the Eigen pair combination with 

linearly independent; note lambda 1, lambda 2, lambda n need not be distinct, what we 

mean is the sum of them could be repeated.  

So far diagonalizability our problem is to find such n Eigen pairs, where the Eigen 

vectors involved in the Eigen pair or linearly independent.  
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Let us look at some simple examples, let us take the matrix A 1 minus 3 3 minus 2 0 2 1 

minus 1 3, which a matrix which is all real entries and it is a 3 by 3 matrix. Let us 

consider the number lambda 1 equal to 4, and the vector pi 1 to be 1 0 1. We now verify 

that, A pi 1 is 1 minus 3 3 minus 2 0 2 1 minus 1 3 into 1 0 1, and when multiply we get 

4 0 4 which is 4 times pi 1.  
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Thus, we find that, pi 1 is an Eigen vector corresponding to Eigen value lambda 1 equal 

to 4. Since, lambda 1 equal to 4 is an Eigen value, and pi 1 is an Eigen vector 



corresponding to this, we get lambda 1 pi 1; that is the number 4 and vector 1 01 is an 

Eigen pair for the matrix A. Similarly, we can verify by simple multiplication that, if 

lambda 1 equal to lambda 2 equal to 2, and pi 2 equal to 0 1 1, then A pi 2 is 2 pi 2, that 

lambda 2 pi 2; and therefore, 2 and pi 2, that is 2 under vector 0 1 1 is an Eigen pair for 

A. 
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Similarly, you can also verify one more Eigen pair lambda 3 equal minus 2 pi 3 is equal 

to 1 1 0, satisfy A pi 3 equal to 2 pi 3, that is lambda 3 pi 3; and therefore, lambda 3 pi 3 

that is minus 2 1 1 0 is also an Eigen pair for A.  
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Therefore, we have found now, we have 3 Eigen pairs, what were they lambda 1 pi 1, 

where lambda 1 was 4 and pi 1 was 1 0 1, lambda 2 pi 2, where lambda 2 was 2 and pi 2 

was 0 1 1, lambda 3 pi 3, where lambda 3 was minus 2 and pi 3 was 0 1 1 are Eigen pairs 

for A, and pi 1 which was 1 0 1, pi 2 which was 0 1 1, pi 3 which was 1 1 0 are clear 

linearly independent. And therefore, we have 3 Eigen pairs, in which the Eigen vectors 

involved are all linearly independent, and this was our search here to be diagonalizable.  
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Since, A has 3 Eigen pairs: lambda 1 pi 1, lambda 2 pi 2, lambda 3 pi 3, where the pi 1, 

pi 2, pi 3 are linearly independent and A is A 3 by 3 matrix and we have got 3 Eigen pair 

and the Eigen vectors in the Eigen pairs are all linearly independent. We have A is 

diagonalizable over R; everything involved is over the real numbers and so it is 

diagonalizable over R, what is the diagonalization process we construct the matrix P has 

the matrix whose columns are these vectors pi 1, pi 2, pi 3.  
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What does that mean? pi 1 is 1 0 1, pi 2 0 1 1 and then pi 3 is 1 1 0; if you take this 

matrix, then P is invertible, and P inverse A P will be the first column corresponds to the 

Eigen value 4, the second column corresponds to the Eigen value 2, the third column of 

P corresponds to the Eigen value minus 2. So, these Eigen values will come in the 

diagonal and all other entities will be 0 P inverses A P now with this matrix P 1, can 

easily calculate P inverse, and verify indeed the P inverse A P is this diagonal matrix.  

So, if you have an n by n matrix where we can find n linearly independent Eigen vectors 

and n scalars lambda 1, lambda 2, lambda n and does n Eigen pairs, in which the Eigen 

vectors involved are all linearly independent. Then we can assert that the matrix A I is 

diagonalize.  
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Let us look at another example, we note that, in the previous example in the Eigen pairs 

that regard the 3 numbers lambda 1, lambda 2, lambda 3, they were all distinct, but this is 

not necessary this numbers may be repeated. Let as look at another example; A equal to 

3 minus 1 1 minus 1 3 1 0 0 4; now, if you take lambda 1 equal to 4, and pi 1 equal to 1 0 

1, we can easily verify that A pi 1 is lambda 1 pi 1. Just multiply the matrix a with this 

vector you will get 4 times pi 1. Similarly, if you take lambda 2 also as 4, and pi 2 as 0 1 

1, we can verify A pi 2 is again 4 pi 2, which is now lambda 2, pi 2.  
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And finally, if you take lambda 3 equal to 2 and pi 3 is equal to 1 1 0, you can verify 

with that matrix A multiplying pi 3 gives as exactly 2 pi 3, which is lambda 3 pi 3; and 

therefore, we have 3 Eigen pairs now. The first one is lambda 1 pi 1 which is 4 and 1 0 1, 

the second one is lambda 2 pi 2 which is 4 0 1 1, and the third one was lambda 3 pi 3 1 1 

0. Notice that the number 4 repeats in the first and the second pair, but the corresponding 

Eigen vectors, we are chosen are different, and 1 0 1 the Eigen vectors involved in this 

are linearly independent. Therefore, A is diagonalizable, A is diagonalizable, we have 

got for a 3 by 3 matrix A, we have formed 3 Eigen pairs lambda 1 pi 1, lambda 2 pi 2, 

lambda 3 pi 3 and pi 1, pi 2, pi 3 are linearly independent, and ends we have A is 

diagonalizable.  
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What is a diagonalizing matrix, again we construct P which is the matrix consisting these 

3 vectors along the diagonal than as before P is invertible, it is can be easily verified and 

we can verify that P inverse A P must be a diagonal matrix. Now, what are the diagonal 

entries, the first column corresponds to the Eigen value 4, the second column also 

corresponds to the Eigen value 4, and the third column of P corresponds to the Eigen 

value 2.  

So, the diagonal matrix, we get will be 4, 4, 2 along the diagonal and all the rest 0, so 

thus we see that whenever for an n by n matrix R n cross n matrix, we are able to get n 

Eigen pairs lambda 1 pi 1, lambda 2 pi 2, lambda n pi n, where lambda 1, lambda 2, 

lambda n are real numbers not necessarily distinct. As we found in the last example, and 

vectors pi 1, pi 2, pi n are linearly independent then we can diagonalize the matrix.  
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So, again we summarize this, this is the important thing to note is that if A belong to R n, 

n has n Eigen pairs lambda j, pi j; j running from 1 to n. So, if you tag n Eigen pairs 

where pi 1, pi 2 are linearly independent, then of course, these vectors pi 1, pi 2 are in R 

n, they are all real vectors then A is diagonalizable and how do we diagonalize it.  
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If you said the matrix P to be the matrix his columns are the pi 1, pi 2, pi n, then P 

inverse exist and P inverse A P will be the diagonal matrix, which will have this lambda 



1, lambda 2, lambda n, along with diagonal entries; therefore, the moral of the story is in 

order you decide or you want to diagonalize A matrix.  

Whether you want to decide whether A matrix is diagonalizable or not and when you 

have decided that, it is diagonalizable how do you diagonalize it, what is the matrix P 

that makes P inverse A P diagonal all these depend on finding this Eigen pairs, if there 

are n Eigen pairs we are d, 1 we know it is diagonalizable, we can construct the past x P 

with the columns as this end n. So, our search therefore, is for this Eigen values and 

Eigen vectors.  
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Thus the diagonalization question crucially depends, actually the answer to the 

diagonalization question crucially depends on finding these Eigen pairs, crucially depend 

on finding this Eigen pairs. not only we want to find the Eigen pairs, we want to found n 

of them, we want to find the n of the m, in such a way that the numbers lambda 1, 

lambda 2, lambda n are a real, and the vectors pi 1, pi 2, pi n are linearly independent.  
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So, the question that arise is where do we look for these Eigen pairs, where do we look 

for these Eigen pairs, that should be our main work, in practice is going to occupy the 

main analysis of diagonalizability or otherwise of a given matrix, the search for this 

Eigen pairs.  

So, we shall now begin our analysis to find the answer to this question of where do we 

look for these Eigen pairs, so looking for Eigen pairs involve several things do you want 

to look for those numbers lambda 1, lambda 2, lambda n, we want this numbers to be 

real numbers, and then we have to look for those vectors pi 1, pi 2, pi n, and we want 

them to be linearly independent and a pi, j to be equal to lambda j, pi j. So, these are the 

ingredients that we are looking for in the numbers, and the scalars that we are hunting 

for… So, in order to hunt for this numbers and scalars we must know something about 

them, we should know how they look like, so that we can go and grasp and see are you 

the 1, we are going to satisfy. 

So, what we want to do is let us look at the Eigen values, that is this numbers, the 

numbers are called Eigen. The numbers appearing in the Eigen pairs are the Eigen 

values. So, we look at some analysis of the Eigen values to familiarize ourselves as to 

how an Eigen value look like or where we should go and look for remember, we are 

looking for the Eigen value as a real number. So, we have to look for this Eigen value in 



this world of real number, which is infinite. So, we are going to search for n needles in 

an infinite stock of needles so, it is very difficult to identify the follows.  

So, we must have some way of identifying the particular needles, the particular number 

that we are going to look for therefore, we are going to analyze. So, suppose we have a 

matrix a which is n cross n real matrix, and lambda real number is an Eigen value of a 

suppose, so we catch holed of 1 of the known frames of a namely the Eigen values, and 

see start analyzing m and C how we looks like know, because is an Eigen value, every 

Eigen value has an Eigen vector when is an Eigen.  
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Therefore this means, so suppose A is an n by n real matrix and lambda real number is an 

Eigen value of A, then this implies there exist A vector u, which is not 0 vector such that, 

A u equal to lambda n, this is the requirement of Eigen value when Eigen value should 

always have an Eigen pair are the A vector u. So, that A u equal to lambda n, if that is 

the case this says lambda I minus A u equal to theta n and remember u is non 0. So, there 

is a vector u non 0, so that lambda I minus A u equal to theta n by what does that tell us. 

Now, let us call this matrix lambda I minus A for the time A, as A sub lambda so, there 

exist if lambda were an Eigen value of a then there may exist an vector u which is 

different from 0.  
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So, that a lambda u equal to theta n, this says the system A lambda x equal to theta n has 

a non trivial solution, has a non trivial solution u. Now, A lambda is since A is real, 

lambda is real, I is real A lambda is also a real n by n matrix. So, this is the system, this 

are homogenous system this homogenous system, whose matrix is a lambda. So, this 

homogenous system corresponding to the matrix A lambda, as a non trivial solution u; 

this immediately tells as that A lambda is not invertible, because if A lambda where 

invertible, this system will have x is equal to A lambda inverse theta which is 0, so x will 

be 0, but we have a nontrivial solution u.  

Therefore, in order that the system has a nontrivial solution A lambda must be not 

invertible, if it were not invertible; that means, the determinant of A lambda must be 

equal to 0, because we know that a matrix is invertible, if the determinant is not 0, so not 

invertible; therefore, the determinant must be equal to 0. So, let us write it a lambda was 

determinant lambda was A lambda was define to be lambda I minus A.  
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So, what is the conclusion that, we have got the conclusion is that if lambda belonging to 

R is an Eigen value of A, because A is A n by n matrix and real A is an Eigen value of A 

lambda is an Eigen value of A implies determinant of lambda I minus A must be equal to 

0, this is our conclusion of the above discussion. We just go through this argument again, 

we said that suppose A is suppose A is A n by n matrix, then if lambda is an Eigen value 

there is an u such that0 u is not 0, and aim is lambda u, this implies A lambda u equal to 

theta n, where A lambda with the matrix lambda I minus A. Therefore, the system A 

lambda x equal to theta n is nontrivial solution u; therefore, the determinant A lambda is 

not invertible, therefore the determinant 0 and ends with it that, if lambda is an Eigen 

value of a then determinant of lambda I minus A equal to 0.  

So, we know some property of an Eigen value of A, if something has to be an Eigen 

value of A minimum it should be such that the determinant of lambda I minus A is 0, 

conversely suppose determinant of lambda I minus A equal to 0 determinant of lambda I 

minus A equal to 0.  
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Implies now, the matrix lambda I minus A is not invertible, because the moment the 

determinant is 0 the matrix cannot be invertible, if this is not invertible that means, the 

system lambda I minus A x equal to theta n. The homogenous system must have a non 

trivial solution u belonging to R n, when you say non trivial I mean u naught equal to 

theta n.  
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This means, A x equal to lambda A u is means, A u equal to lambda u. 



That says, lambda is an Eigen value with Eigen vector u; therefore, what we have is that 

this is the conclusion 2, we have got is that determinant lambda belonging to R 

determinant of lambda I minus A equal to 0 implies lambda is an Eigen value. Now, 

count comparing conclusion 1 and conclusion 2, we see that each of the corners of the 

other.  
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And therefore, combining these 2 we get that important result or theorem whatever, you 

are going to call it namely A belongs to R n cross n, A is A real n by n matrix lambda 

belongs to R, then lambda Eigen value of A if I do not, because you have seen both ways 

it is true determinant of lambda I minus a equal to 0. Now, we have got a 

characterization of the Eigen values of A, what is the characterization? It has to make the 

determinant of lambda I minus A equal to 0.  

So, we do not have to search all over the place for this Eigen value in this infinite world 

of real numbers, we have to look for those follows who make the determinant 0, this 

particular determinant lambda determinant of lambda I minus A 0, Therefore, we must 

look for the Eigen values as the roots of the function determinant lambda I minus A, we 

have to find it as the roots of this function. Now, we know given the matrix A how do 

you go about searching for the Eigen value, first with construct this function which is 

now A function of will call it D lambda this is the function of lambda whichever point. 



At which this function becomes 0 that is going to be an Eigen value, if 4 is a point so, the 

D 4 that is determinant of 4 I minus A is equal to 0, then automatically 4 must be an 

Eigen value. So, every root of this function D lambda must be equal to must be an Eigen 

value of A; therefore, the search now we know is going to depend on 0(s) or the roots of 

this function D lambda. Now, we have some control of over search for the Eigen values; 

and therefore, we must analyze this function D lambda in order to understand better 

about it 0(s), because the 0 S are going to be our Eigen values.  
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So, let as analyze, so the search depends when I say the search the search for Eigen 

values, the search for Eigen values depends on our analysis of this function D lambda 

equal to determinant of lambda I minus A. So, we now look at this function, so now 

determinant of lambda I minus A, it is like. So, if the lambda I is only the identity matrix 

with A lambda struck along the diagnose, it is a diagonal matrix with A lambda struck 

along the diagonals and from that we have to subtract the matrix A. So, we get the 

determinant as lambda minus A 1 1 minus A 1 2 minus A 1 n; it is simply the matrix 

minus A except that along with diagonals, we have to stick lambda, so it is minus A 2 1 

lambda minus A 2 2 minus A 2 n and so on, the last will be minus A n 1 minus A n 2 and 

then lambda minus A n.  
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So, this is the n by n determinant, which is determinant of lambda I minus n, when we 

expand this determinant, do you see that the product of diagonal terms, is one of the 

terms in the expansion, this determinant we see that the product of the diagonal terms is 

one of the terms in the expansion we give lambda to the power of n; that is the highest 

power of lambda become yet, and thus is going to be first that is going to be A lambda to 

the power of n tern. And since, every entry is either a linear polynomial lambda or A 

constant and the determinant is simply. The product involve the product of the entries. 

The determinant is going to be simply product of some of this polynomials, and hence it 

is going to be a polynomial, and we have seen that the highest degree term is lambda to 

the power n.  

So, this is one here polynomial in lambda 2 with a polynomial with real coefficients, 

because every entry is real there. So, all the coefficients are going to be real in the 

polynomial, and so the highest degree term of degree n highest degree term is going to be 

lambda to the n. So, degree n and the highest degree term lambda to the power of n has 

coefficient 1, because it involves the product of the lambda, lambda and lambda which is 

along the diagonal. So, with leading coefficient, when I say leading coefficient I mean 

the coefficient of the highest degree term the leading coefficient as 1. 

So, we have the 4 important properties of the Eigen values of the determinant are lambda 

I minus A, it is a polynomial. It is a polynomial with real coefficients it is a polynomial 



with real coefficients of degree n, it is a polynomial of real coefficients with degree n and 

leading coefficients is 1. Whenever, the leading coefficient is one we call it a monic 

polynomial. So, thus this D lambda is a monic polynomial of degree n with real 

coefficients, this is called the characteristic polynomial of the matrix A.  
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So, this polynomial is called the characteristic polynomial of the matrix A and denoted 

by… So, let us say C A lambda. So, the C A lambda is by over observations above is a 

monic polynomial of degree n with real matrix when A is a real matrix, we are 

considering real matrix when there A is real matrix the characteristic polynomial of A is 

a monic polynomial of degree n with real coefficients. So, as we are interested in this 

0(s) or the roots of this polynomial, because we have seen, but the 0(s) or the roots of 

this function D lambda or the Eigen values. Now, D lambda is what now our CA lambda 

is it is a polynomial.  
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And therefore, the Eigen values of A are the roots of this polynomial. So, when we are 

looking for Eigen values of A when we are working with real number, we are looking for 

real Eigen values, and therefore we are looking for the real roots whenever, we are 

working with real numbers we have to work only for with real roots. So, when we have 

working of diagonalization problem with real numbers, then we have looking for real 

Eigen values; and therefore, we are looking at the real roots of this polynomial.  

So, we are trying to solve this equation, and find the values solutions of this, so this 

equation is called the characteristic equation of A; the equation C A lambda is called the 

characteristic equation of A when we are interested in the roots or the solution of the 

characteristic equation, because these are the Eigen values of the matrix A. So, now we 

know exactly, since our search for the Eigen values is now come down to finding the 

roots of a polynomial.  

We do not have to go around searching all over the real numbers, given matrix A we 

construct this determinant lambda I minus A, when we expand it we get a polynomial, 

and this polynomial C A lambda is polynomial of degree n, it has real coefficients monic. 

So, we have a polynomial of degree n, the moment we find the roots of this polynomial 

of search for the Eigen values is over, because they are lying there; every Eigen values is 

in the roots and every root is an Eigen value. So, our search for the Eigen value 

therefore, simply boils down to finding the real roots of the polynomial C A lambda.  
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Now, if you look at a simple example one of your earlier examples, if you take the 

matrix A 1 minus 3 3 minus 2 0 2 1 minus 1 3, then what is C A lambda, it is the 

determinant of lambda I minus A. So, let what is the determinant it is lambda minus 1 3 

we have to negate A, and stick lambda along the diagonal negate A and stick lambda 

along this determinant. And then expand this determinant, this determinant terms have to 

be lambda minus 4 into lambda minus 2 into lambda plus 2.  
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Therefore, the roots are lambda 1 equal to 4, lambda 2 equal 2, and lambda 3 equal to 

minus 2. You may recall the earlier example, we say when we looked at examples of 

Eigen pairs - the first example these were the 3 numbers, that appeared in the 3 Eigen 

pairs. The first Eigen pair at 4, the second Eigen pair at 2, and a last Eigen pair at minus 

2.  

So, this Eigen values will obviously occur in this Eigen pair combination, so here is A 

matrix A, when we write the characteristic polynomial, we get remember when you 

expand this you will get lambda cube, it is a first term. So, it is a polynomial of degree 3 

and since, the highest term is the lambda cube; it is a monic polynomial of degree 3, 

when everything involved is real number.  

So, it real coefficient so, the characteristic polynomial is a monic polynomial of degree 3 

with real coefficient the degree 3, because we are dealing with A 3 by 3 matrix, we deal 

with an n by n matrix, our degree will be n; therefore, the roots of this characteristic 

polynomial namely 4, 2 and minus 2 are the Eigen values of this matrix.  
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Let us look at another example, this again the same matrix which we consider earlier to 

give example for Eigen pairs. Suppose, we consider this matrix. What is the 

characteristic polynomial C A lambda, that is determinant of lambda I minus A, where if 

I write lambda I minus A, I have to negate A, and then stick A lambda along the 



diagonal; that is the determinant write A negative of A and stick at lambda along with 

that.  
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If you expand this determinant this turns out to be lambda minus 4 whole squares into 

lambda minus 2. So, this is again is a monic polynomial of degree 3, the degree is 3, 

because A 3 by 3 matrix and when you expand this there will be lambda square term, 

here in this first and lambda term. In the second the product will be lambda cube so, this 

monic the cube there must coefficient 1. So, it is a monic polynomial of degree 3 and 

since, everything involve coefficients are real is with real coefficients. So, 3 by 3 matrix 

monic polynomial degree 3 with real coefficient, what are the roots this case there is 

there are only 2 roots actually, one of them is repeated. 

So, lambda 1 equal to 4 repeated twice and lambda 2 equal to 2 so, really speaking there 

are only 2 Eigen values 4 and 2, but 1 of them is repeated twice. So, these are the Eigen 

values, these are the Eigen values of A; therefore, when you remember if we are dealing 

with real matrix and we are dealing with real diagonalizability, then we are looking for 

real Eigen values.  
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Let us look at another simple example, let us consider matrix A which is 0 minus 1, 1, 0, 

this again A real matrix 2 by 2. So, it is characteristic polynomial now, must be a monic 

polynomial of degree two, because set 2 by 2 matrix. So, let us have the characteristic 

polynomial which is negate the matrix, and then you have to stick A lambda along the 

diagonal.  

So, it is going to be lambda along the diagonal and when you expand this, you get 

lambda squared plus 1. Now, what are the Eigen values, if you are working in R we are 

looking for real roots of C A lambda, but lambda squared plus 1 equal to 0 has no real 

root. So, has no real roots; therefore, no real Eigen values, the moment you do not have 

any Eigen values; therefore no Eigen pairs, the moment you do not have Eigen pair there 

is no diagonalizability over R, because we are looking at R.  
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So, this example is a sticking example in the sense that before dealing with real matrices, 

and if you want to do real diagonalizability it is not always possible, because anyone 

matrix which is real, it is simple 2 by 2, and it has no Eigen values; and therefore there is 

no possibility of real diagonalizable. Why did this happen?  

Therefore, even though the matrix the above matrix is real, it does not have any real 

Eigen values. So, what is the problem? Why did this happen? This happens, because we 

are looking for the Eigen values or the roots of the characteristic polynomial. The 

characteristic polynomial is the polynomial of degree n with real coefficient, but in 

general A polynomial of degree n or with real coefficients may not have real roots, and if 

it has real roots all of them may not be real, some of them may be real, some of them 

may be complex, and there is who appear as complex.  

You place appear complex conjugate pairs therefore, solving polynomial equations with 

real coefficients over the real’s, we may not have any roots or we may not have enough 

number of roots that is one of the algebraic deficiencies of the real numbers. In fact it is 

in order to eliminate this algebraic deficiency of real numbers the complex numbers have 

been created.  
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So, let us start note that this problem arises this difficulty arises, since we are seeking 

Eigen values for A belonging to R n cross n, as roots of A real poly or say A polynomial 

with real coefficients A polynomial with real coefficients, but in general A polynomial of 

degree n with real coefficients.  
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One may not have real roots or if it has real roots, it may not have n real roots therefore, 

there already a big stumbling block in our search for Eigen values. If you have working I 

the real m of real numbers this is, because of the algebraic deficiency of the real 

numbers, what is said as the real numbers are not algebraically closed, that is 

polynomials with real coefficients cannot be factorize completely over the real numbers 

that is, they may not have real roots.  

Hence, there are re reducible polynomials with real coefficients of degree more than 1; 

therefore, we are struck here, now as a first stop instead of looking at the problem as to 

what is the alternatives that available. We will overcome this difficulty by saying that, 

we will allow complex roots also, because in the above examples suggested, that is going 

to be problem. If we had allowed complex Eigen values also which means, we allow the 

Eigen pairs to be complex pair, where the number lambda can be complex.  

In the vector pi can be complex even though the matrix is real, then for example lambda 

square plus 1 will have R roots plus or minus I. Therefore, will have to Eigen values 

hence, as a first corrective step, we will say even in the matrix is real. We will allow 

complex roots of the characteristic polynomial, and we will allow complex Eigen vectors 

which simply means that we now expand our realm, and say it with all matrices as 

complex matrix a real matrix can also be treated as a complex matrix. And therefore, we 

will think of everything as over. 



C n m, and if you are lucky that we get all the roots was real, then we can work within 

the real m of the real numbers itself. Therefore, in order to avoid this difficulty. In order 

to avoid this difficulty, we shall allow complex Eigen value, and hence complex Eigen 

vectors if necessary.  
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Therefore, we look at the problem as that of diagonalizing A, A complex matrix over the 

complex number; that is to find P which can be in C n cross n invertible; such that, P 

inverse A B P is D, a diagonal matrix in C n n. So, therefore we expand everything to the 

domain of complex numbers, why do we do that.  
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What is the advantage? Now, we get C A the characteristic polynomial as get to treat, we 

can treat this as a polynomial monic of degree n with complex coefficients, the monic 

polynomial of degree n with complex coefficients, and the fundamental theorem of 

algebra says that if you have a complex polynomial with degree n, it will have n roots 

may be some of the roots are repeated, but if you count the repetition the total number of 

roots will be n, which mean the complex polynomials can be completely factored into 

linear polynomials by fundamental theorem of algebra C A lambda will have n roots.  
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The roots may be complex some of them may be repeated, if in particular A is real is A 

real matrix, then the polynomial will be real polynomial. And therefore, the complex 

roots must appear in conjugate the complex roots will appear in conjugate pairs. So, what 

this says is that as far as, the search for the Eigen values is concern; there is no problem 

in finding them enough number of them. In fact n of them is the roots of the 

characteristic polynomial provided, we allow complex roots.  
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Hence, we will be able to successfully, we will see what is mean by successfully said for 

n Eigen values of A as the n roots of the characteristic polynomial, and I assert and I 

repeat that this, n roots will be complex also. If A is complex, the n roots can be complex 

and if A is real still, the n roots can be complex, but whenever A complex roots appears 

as A root it is conjugate pairs must also appear as a conjugate.  
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So, what is the moral? The moral is, if we allow complex roots C A lambda can be 

factored, say lambda 1 is A root may be it repeats A 1 times, lambda 2 is root, may be it 

repeats A 2 times, lambda k is A root may be it repeats A k times; lambda 1, lambda 2, 

lambda k distinct roots a 1, a 2, a k the reputations. Thus, our search for Eigen values, we 

have a clear idea now as to where we should look for them, given the matrix A construct 

the characteristic polynomial look for it is roots. Now, knowing about Eigen values we 

shall now in the next lecture look at how we go and search for the Eigen vectors.   

 


