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In the last lecture, we found that if F is any field, then any n dimensional vector space 

over F is isomorphic to F n. And therefore, we concluded that when we are talking about 

vector spaces over F, the main basic vector spaces are this Fn. Now, in particular if we 

take F to be the field of real numbers, then the basic vector space of dimension k is R k. 

And is the because of this reason that we study R k in great detail.  
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So, hence we look at R k in more detail. The first thing that we observe is R k being a 

vector space it already has this basic algebraic structure are given by the 2 basic 

operations of the vector space namely addition and scalar multiplication. Now, we are 

going to bring in more structure, (( )) more geometric in nature on the space R k. So, we 

look at the notion of first, the dot product which most of you will be familiar with it. Let 

us consider the vector space R 3 you may recall that, if we take any vector x whose 

components are x 1 x 2 x 3 and a vector y whose components are y 1 y 2 y 3.  
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Then we define the dot product, this is in the vector calculus vector algebra per learns 

known as the dot product x dot y, it is defined to be x 1 y 1 plus x 2 y 2 plus x 3 y 3. 
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We now, generalize this idea. So, we generalize then we take R k for any k now, not k 

not necessarily 3, it may be hundred, it may be twenty, it may be thirty fix a k then look 

at the k dimensional vector space R k and if we take any 2 vectors x 1 x 2 x k and y equal 

to y 1 y 2 y k analogous to the dot product. We now, define the dot product and R k and 

from now, on we will refer to this as the inner product in R k and instead of x dot y, we 

will denote it by x comma y with in a bracket. 

So, we define inner product of x with y as it is denoted by x comma y with a bracket and 

it is defined to be x 1 y 1 plus x 2 y 2 and so on x k y k. We may notice that, this is the 

same as taking the matrix y and taking it is transpose and multiplying with the matrix x, 

the column matrix y, it is transpose will be a row matrix. So, we have a row matrix and 

we multiply this row matrix by this column matrix, the result will be a number and 

therefore, we observe that the inner product of 2 vectors is a number. 
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So, we define the inner product of 2 vectors in R k by this definition. We observe for 

some simple properties of this inner product (no audio from 05:28 to 05:37). From the 

definition, we observe that x comma x will be x 1 square plus x 2 square plus x 3 square 

plus x k square. So, we will simply write it as j equal to 1 to k, x j square and therefore, 

this being the sum of non negative quantities, this will be always greater than or equal to 

0 and when will that become 0 when the sum of the squares is 0, but the sum of the 

squares is 0. Since, all are real numbers if only when each 1 of these entries is 0 that 

means, x j is 0 for all j, but x j is 0 for all j means x is equal to 0. 

So, if and only if, x is the 0 right to the first important property is the inner product of 

any vector with itself is always non negative and it become 0 only when the vector is the 

0 vector. The second important property is, we have a product note that the product of 2 

vectors, this product is inner product, the result is not a vector, but is the number is the 

real number and this real number is always non negative and become 0 only when x is 

the 0 vector.  

Now, we have introduced some new action in the vector space, the moment we 

introduced some new action, we are interested in what are its implications on the 2 basic 

operations of the vector space namely addition and scalar multiplication. Before that, we 

observe that the definition here is symmetric in x and y, if we interchange the positions 

of x and y, the result is going to be the same, you will get y 1 x 1 y 2 x 2 y n x n, but the 



result is going to be the same. Therefore, we observe the first, the symmetric property x 

comma y is the same as y comma x for every x y in R k, that is the inner product of x 

with y is the same as the inner product of y with x. 
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Then we look at the effect of this operation of inner product with the 2 basic algebraic 

operations in the vector space namely addition and scalar multiplication. So, suppose I 

take 2 vectors x and y and add them and then take the inner product with z, that is the 

same as by definition j equal to 1 to k, x plus j has coordinates x j plus y j and z as 

coordinate is z j which is equal to j equal to 1 to k, x j z j plus j equal to 1 to k, y j z j, but 

this first sum is nothing but the inner product of x with z plus the second term is the inner 

product of y itself with simply (( )) to say that this inner product is distributive from the 

right x plus y comma z is x comma z, y comma z.  

So, we will (( )) inner product is right distributive (no audio from 09:24 to 09:30). This is 

the effect of addition, we we interpreted with respect to the inner product. Next, we will 

see the effect of this inner product on scalar multiplication; this is true for any vectors x, 

y, z and R k. Next, we look at this effect of inner product on scalar multiplication. So, we 

take a vector x and we take a scalar alpha and then take its inner product with a vector y, 

what is this equal to the components of alpha x or alpha x j and this is to be multiply with 

the components of y j.  
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And this is the same as summation j equal to 1 to k, alpha can be pulled out of the 

summation x j y j and the summation is nothing but x comma y, so it is just alpha x 

comma y. This simply says that the alpha can be pulled out of the inner product from any 

1 of these practice from the first practice remark, since the inner product is symmetric 

right distributive will also imply left distributive and pulling out alpha from the first term 

in the inner product will also imply pulling out alpha from the second term in the inner 

product.  

So, using the symmetric property which we have called as true, the symmetric property 

using 2 in the distributive property and scalar multiplication property, we get x comma y 

plus z is equal to x comma y plus x comma z for every x, y, z in R k, that is left 

distributive, the inner product is left distributive and we get x comma alpha y is the same 

as alpha comma into x comma y for every alpha in F and x in R k. So, we are also, we 

have to say that for every alpha in F, x, y in R k. So, we have left distributive, right 

distributive and the constants can be pulled out of the inner product either from the first 

factor or from the second factor. So, this is a very important generalization of the notion 

of the dot product that we had in vector algebra, what does this inner product give us?  
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So, the effect of inner product, if you recall again look at R 3. Now, for x comma y in R 

3, which is the dot product now, we are going to denote by this notation is summation j 

equal to 1 to 3, x j y j and we Now, if we Now, take x comma x, we get j equal to 1 to 3, 

x j square which is (( )) length of the vector in the 3 dimensional space the square. So, 

the square of the Euclidean length which we normally define as the length, that is the 

distance from the origin to the point x 1, x 2, x 3.  
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And therefore, we have that the length which we now, denote by this the length of x is 

square root of x comma x. Now, this is generalize to define the length of a vector from 

the inner product through this definition. So, we moment we have the notion of the inner 

product, we can define the notion of the length through this definition, by experience that 

we gain from looking at R 3. Therefore, generalize in R k for any x belonging to R , we 

define the length of x which we denote by this symbol and from now, on call it as 

NORM of x as NORM of x by definition is square root of x comma x.  

Notice that there no problem of taking the square root of x comma x because we have 

already observed that for any vector x comma x is a non negative quantity and therefore, 

we are taking on square root of a non negative quantity so, you will get only a real 

quantity. However, we may wonder, there are 2 square roots plus and minus which 1 do I 

take. Since, we want the length to be non negative; we do not want negative lengths. 

Therefore, we always take that square root which is not negative.  
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Now, what are properties of this length? This way of defining the length since, we have 

generalize from R 3, the properties of the length in R 3 are carried over to the properties 

of the length in R k, what are these properties in R 3, if you take 3 dimensions and if you 

take any vector, the length is always going to be non negative and only time the length is 

0 will be the 0 1 when the vector is 0 vector. Secondly, what is the effect of the length on 

the 2 basic operations of this vectors, if we add, if we multiply a vector in 3 dimensions 



by a number, if the number is positive, the length simply gets multiplied by that number, 

if the number is negative, the length simply gets by the multiplied by the modulus of that 

number.  

So, in any case the length gets multiply by the modulus of the scalar which is multiplying 

the vector and we have a simple law in geometry that, if we have a triangle any side, it is 

length must be less than or equal to the sum of the 2 sides. In vector language, this 

translates into what is known as the triangle inequality, that the length of this sum of a 

vector is less than or equal to the sum of the lengths of the vector. Let us summarize this, 

these get generalize in the most general set of R k as well.  

The first property is the length of a vector is always non negative because square root of 

x com x comma x is always non negative and equal to 0, if and only if, this is 0, this 

square root is 0, if and only if what is inside that x comma x is 0, but the property of the 

inner product says x comma x is 0 only when x is 0; and therefore, we get this is equal to 

0, if and only if x is the 0 vector and when you multiply a vector by a scalar alpha, this is 

for every x in R k when you multiply vec vector by a scalar then the length gets 

multiplied by the absolute value which is for every alpha in R and for every x in R k.  

And the third is the property of this effect of this notion of length and the basic 

operations of addition x plus y is less than or equal to x plus y, the length of x plus the 

NORM of x plus NORM of y for every x y in R k. This is called the triangle inequality, 

we shall not get involved in a proof of this, this follows from what is known as the 

Cauchy Schwarz inequality, we should we shall look at it at a later time, but it follows 

from the notion of a Cauchy Schwarz.  

So, in other words we we have on R k, we have the inner product, the inner product in 

turn induces the notion of a length or the NORM and this obeys all these standard ideas 

that we have about length, that length should be non negative, it should become 0 only 

when the vector is 0 and length should get dilated by the absolute value of the scalar 

multiplying it and the triangle inequality is satisfied. 
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There is 1 more effect of the idea of inner product which is the notion of orthogonality. 

This is where the inner product wings in the orthogonal geometry. So, we should now, 

look at the next implication of the inner product. The first implication of the inner 

product is that induces the notion of a length. The second interpretation or the second 

influence of the inner product is the notion of the orthogonality. So, what do we mean by 

it, again look at R 3. So, in R 3 in our vector calculus or vector algebra course we learn 

that, if x and y are in R 3, we say x is perpendicular to y or we have x is perpendicular to 

y, if x dot y is equal to 0 which x dot y is what we are generalized x comma y that inner 

product.  
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So, we generalize this notion to say that in R k, x is set to be orthogonal to y, if the inner 

product x with y is 0. So, we generalize this idea to the following, if x y belong to R k, 

we say x is orthogonal to y, if x comma y equal to if and only if x comma y is equal to 0, 

recall that the inner product of the 2 vectors a number, that numbers must become 0, the 

inner product of 2 vector is 0, we says x is orthogonal is to 0. Now, if x y is 0, y x is also 

0. So, x is orthogonal to y, y is automatically orthogonal to 0. So, x, y is equal to 0, if and 

only if, y, x is equal to 0. Hence, x is orthogonal to y, if and only if, y is orthogonal to x 

and that is why we would not say, x is orthogonal to y, y is orthogonal x, we simply say 

x and y are orthogonal. 
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Now, note x comma theta k for any x in R k, what is the x comma theta k, we have to 

look at j equal to 1 to k, x j and j th component of theta k multiply. Now, but j th 

component of theta k also 0 and therefore, that is 0. So, that implies theta k is orthogonal 

to all the vectors in R k. Now, in fact this is the characterization of the 0 vector because 

this is the only vector which is all orthogonal to all the vectors in fact, theta k the 0 

vector theta k is the only vector, orthogonal to all the vectors in R k. 

This is only vector no other vector can the orthogonal why suppose x is in R k and x is 

orthogonal to all vectors, if x is orthogonal to all the vectors this implies x is orthogonal 

to itself, because it is orthogonal to all the vectors in particular, it must be orthogonal to 

itself, but if x is orthogonal to itself the inner product of x is with itself must be a 0, but 

we know that the inner product of the vector with itself is 0 only when x is equal to theta 

k. Therefore, the only vector which is the orthogonal to all vectors is the 0 vector.  

(Refer Slide Time: 24:42)  

 

Let us look at some simple examples of this orthogonality format. Let us consider R 4, it 

say the vector x equal to 1 1 1 1 and y equal to 1 minus 1 1 minus 1 clearly, we have x 

comma y is x 1 y 1 which is 1, x 2 y 2 which is minus 1, x 3 y 3 which is 1, x 4 minus 4 

x 4 y 4 which is minus 1. So, it is going to be 1 minus 1 plus 1 minus 1 which is 0 which 

implies x is orthogonal to y in the vector space R 4. Let us look at another 1 example. Let 

us look at R 3 and let us look at x 1 are let use as a standard symbol, let us call it as e 1 



which is 1 0 0 and e 2 which is 0 1 0, e 3, 0 0 1. Then clearly e 1 is orthogonal to e 2, e1 

is orthogonal to e 3, e 3 is orthogonal to e 2 because all the inner products are 0. 
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Next, look at another simple example consider R 4, consider the vector x equal to 1 1 1 1. 

Now, let us find all those vectors which are perpendicular to x. So, let us find all vectors 

in R 4 which are orthogonal to x. Now, let us take a vector the u which is u 1 u 2 u 3 u 4. 

Suppose, u is orthogonal to y x, this can happen only when the inner product of x and u 

is 0, but what is the inner product of x and u, it is u 1 plus u 2 plus u 3 plus u 4 so, this 

happen if and only if, u 1 plus u 2 plus u 3 plus u 4 equal to 0. So, therefore, a vector to 

the orthogonal to x, if and only if the sum all of all its components equal to 0 that means, 

u must be of the form alpha beta gamma since, sum of the 4 components must be a 0, the 

fourth component must be alpha minus beta and thus there alpha, beta, gamma are real 

numbers. So, this is the this is the set of all vectors which are orthogonal to x.  
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Hence, the set of vectors of the form null quality use in (( )) called u, u equal to alpha 

beta gamma, minus alpha minus beta minus gamma were alpha beta gamma are real 

numbers. This collection of vectors is the set of all the vectors orthogonal to x. Let us 

now, pursue this idea not dose to finding the vector which all are perpendicular to given 

vector x, but let us try to find a set of all vectors perpendicular to given set of vectors, 

instead of just 1 vector.  
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So, what we now do is generalize this example, how do you generalize this example. The 

way we generalize example is let S be any non empty subset of R k. In the above 

example, we have taken the set S to be this single vector x, we have just taken the S to be 

the single vector. Now, what we are going to do is taken arbitrary non empty subset of R 

k and then we denote by S perp with the super script perp, the set of all vectors in R k 

which are orthogonal to all the vectors in S.  
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Therefore, in symbolically we can write S perp is the set of all the vectors u in R k, such 

that u must be orthogonal to every vector S. So, we must have S comma u must be equal 

to 0 because you must be orthogonal to s and this must happen for every S because it 

must be a orthogonal to all the vectors. So, it is the set of all u in R k such that, S comma 

u is 0 for every S in S. This is the collection of all the vectors which all to perpendicular 

to every 1 of the vectors in S. Now, is this an empty collection or non empty collection 

will there be any vector at all which is perpendicular to all the vectors in S.  

We know that the 0 vector is perpendicular to all the vectors in R k and hence in 

particular the 0 vector is perpendicular to all the vectors in S, clearly theta k belongs to S 

perp since, theta k is orthogonal to all vectors in R k and hence in particular to all vectors 

in S. So, the 0 vector belongs to S perp. Since, S perp is now an empty sub set of R k, the 

moment we have non empty sub set of R k, we wonder whether it will be a sub space.  
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Now, since S perp is a non empty sub set of R k, we check, if it is a sub space of R k. 

Now, it will be a sub space of R k, remember any sub set of R k will be a sub set sub 

space of a R k, if it is non empty which is given then it is close with the respect to the 2 

basic operations of an addition and scalar multiplication. So, for this we have to check, if 

x and y belong to S perp implies x plus y belong to S perp and that is closure with 

respect to addition; 2, if x belongs to S perp, alpha is any real number by the this implies 

alpha x belongs to S perp. So, we have to check whether S perp is close with respect to 

addition and close with respect to scalar multiplication. 
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So, let us look at 1, we are given x, y in S perp what does that mean, x is in S perp which 

means, x is orthogonal to all the vectors in S that means s, x is equal to 0 for every s in S. 

Similarly, y is in S perp so, y s, y is equal to 0 for every s in S. So, s, x must be equal to 0 

for every s in S, s y must be equal to 0 for every s in S. Now, we add, we get s, x plus s y 

is 0 plus 0 so, it is 0 for every s in S. Now, we know that the inner product is right 

distributive and left distributive. So, we can write this as s of x plus y is 0 because s of x 

plus y, s comma x plus y, s comma x plus s comma y, so this is for every. This says, the 

vector x plus y is orthogonal to all vectors in S that is exactly mean the meaning of the 

fact that x plus y belongs to S perp. Therefore, we have seen that, whenever x and y 

belong to S perp, x plus y also belongs to the S perp. This shows that S perp is closed 

under addition.  
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So, hence S perp is closed under addition. 2, we have to now check whether it is closed 

under scalar multiplication. So, we are given x in S perp, alpha a real number, what is 

that implies, x in S perp again says x must be a orthogonal all the vectors in s and alpha 

is in R. Now, s comma x is a real number, alpha is a real numbers. So, we can multiply 

and on the right hand side, we get alpha into 0 0. Now, we see we know that a constant 

can be pulled in and out of the inner product from any 1 of the factors. So, this is the 

same as s of alpha x is equal to 0 for every s in S. This is the same thing as saying that 

alpha x is orthogonal to all vectors in S that the same thing as saying alpha x belongs to S 

perp and hence S perp is closed under scalar multiplication.  
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So, what we have seen is that, the S perp is a non empty subset non empty subset of R k 

which is closed under addition and scalar multiplication; this means the S perp is a 

subspace of R k. So, what we are done is, we have started it an arbitrary non empty 

subset S and we concluded S perp, the collection of all vectors which are perpendicular 

to all the vectors in S must be a sub space. Note that, we are not assume that the original 

set S was a sub space, irrespective of whether the original set is the sub space sub space 

or not, the perp S perp will always be a sub space. Note, we have not assume we have 

not assume S to be a sub space, but still S perp is a sub space.  
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so, the conclusion is the S perp for any non empty subset S in R k is always a sub space 

of R k irrespective of whether S is a sub space or not. So, whether is a sub space or not, S 

perp is always a sub space of course, in particular, if W is a sub space of R k then W perp 

will also be a sub space. We shall be looking at such perps of sub spaces, when we 

analysis a matrix. 
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Let us, look at (( )) simple examples. Let us consider v to be R 3. So, in other words, we 

look at the sub space the vector space R 3. We look at the vector space R 3 and let us 

take the set S consisting of 2 vectors where u 1 is 1 1 1 and u 2 is equal to 1 2 3. Notice 

that, S is not a sub space because the vector 1 1 1 is there, but multiples of this vectors 

are not there. So, a note S is not a sub space s is not a sub space. Now, let us find S perp 

in this case. Now, what is the S perp, S perp is the collection of all the vectors which are 

perpendicular to all the vectors in S. 

 So, suppose a vector x belongs to S perp that implies and implied by, this can happen if 

and only if, x is orthogonal to u 1 and u 2 because a vector gets qualified to be a S perp 

only when it is orthogonal to every 1 of the vectors in S that is if and only if, its inner 

product with u 1 must be 0 and its inner product with u 2 must be 0. Now, x is x 1 x 2 x 3, 

the inner product with u 1 will give me x 1 plus x 2 plus x 3 as a 0 and its inner product 

with u 2 will give x 1 plus 2 x 2 plus 2 3 x 3. Let us now, call this equation as 1 and call 

this equation as 2. So, x 1, x 2, x 3 must be such that both this equations are satisfied. 



Therefore, a vector x qualifies to the in S perp if and only if, its components x 1, x 2 x 3 

satisfy this condition.  
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Now, there are 2 equations for these 3 coordinate and therefore, we can eliminate 2 of 

these variables. So, what does this tell, if we now subtract the first equation from the 

second equation gives x 2 plus 2 x 3 x 2 plus 2 x 3 is 0 or x 2 is equal to minus 2 x 3, if 

we now use this in 1, we get x 1 minus 2 x 3 plus x 3 as 0 which gives x 1 equal to x 3. 

So, we have to have x 1 to be equal to x 3, x 2 be to minus 2 x 3 and x 3 can be chosen 

an arbitrary.  

So, if and only if, x is of the form, x is equal to if we choose x 3 as alpha, x 1 as to be 

chosen as a alpha and x 2 as to be chosen as alpha minus 2 alpha and therefore, we get S 

perp consists of all these vectors which are of this form the alpha and this is clearly a 

subspace and that can be easily verify. So, for this collection of vectors S which which 

for which had here, this set of vectors the corresponding S perp is given by this subspace 

of vectors, the S perp is always a subspace. 
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 Now, let us consider a sub space W in R 3, W sub space of R 4 where W is defined to be 

the collection of all vectors of the form alpha, beta, alpha plus beta, alpha minus beta, 

alpha beta belongs to R. Now, what is the W perp in that in this case? Now, let us say 

that, we want to find x belonging to W perp. Now, what does it mean to say, that x is 

perpendicular to all the vectors in W. Now, suppose x is perpendicular to the basis 

vectors in W then it will be automatically perpendicular to all the vectors in W, lets 

verified this. Now, a basis for W is u 1 equal to 1 1 1 1 0 1 1 this is taken by, this is got 

by taking alpha equal to 1 and beta equal to 0 and now, taking alpha equal to 0; beta 

equal to 1, we get these 2 vectors are linear independent R and W and any vector is the 

form of alpha u 1 plus beta u 2. So, therefore, this forms a basis.  
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Now, any vector in W is of the form alpha u 1 plus alpha u 2, there alpha u 1 plus beta u 

2. Now, suppose x is perpendicular to u 1 that is suppose x is orthogonal to u 1 and u 2 

then x comma u 1 equal to 0; x comma u 2 equal to 0 and that implies x comma alpha u 1 

is 0; x comma alpha u 2 is 0, because we can pull out a constants in and out, we can take 

a different constant here, beta if you want and then that will say if we add both of them, x 

of alpha u 1 plus x of beta u 2 equal to 0 and using the distributivity we get alpha u 1 

plus beta u 2 equal to 0 which means x is orthogonal to all vectors in W and therefore, to 

check whether a vector is orthogonal to all the vectors in W, it is enough if it is ortho 

check whether it is orthogonal to the basis vectors.  
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So, x is belongs to the W perp if and only if, x belongs x is orthogonal to u 1 and u 2, if 

and only if the orthogonality with u 1 will means x 1 x 1 plus 0 times x 2 plus x 3 plus x 

4 is equal to 0. So, therefore, if and only if x 1 plus x 3 plus x 4 is equal to 0. Now, 

orthogonality with x 2 will give me x 2 plus x 3 minus x 4 is equal to 0. So, x 2 plus x 3 

minus x 4 is equal to 0. Now, the first equation gives me x 1 equal to minus x 3 minus x 

4, second equation gives me x 2 equal to minus x 3 plus x 4. So, it says x 3 and x 4 can 

be chosen arbitrarily then x 1, x 2 has to be chosen like this.  
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So, we get W perp is equal to the set of all vectors of the form u equal to, if we choose if 

we choose x 3 as alpha, x 4 is beta then x 2 as to be chosen as minus alpha plus beta and 

x 3 as minus alpha minus beta there alpha beta belong to R. And now, it is easy to verify 

that this is a sub space of R k. Now, words are basis, W perp being a sub space a basis 

for W perp is given by V 1 equal to, if we take alpha equal to 1 and beta equal to 0, we 

get minus 1 1 1 0 and V 2 by taking alpha equal to 0 and beta equal to 1. So, this forms 

the basis for w perp. So, the dimension of W perp in this case is 2.  

(Refer Slide Time: 51:44) 

 

So, we have this notion of the perp of any arbitrary set and the perp of any arbitrary set is 

automatically a sub space of R k and in particular, the perp of a sub space of is always a 

sub space. Now, we would like to generalize the notion of i j k vectors which leads as to 

the notion of orthonormal sets. So, if we now look at the R 3 space then take the vectors i 

which be vector space we denote by i whose components are 1 0 0, in the vector j which 

we denote by 0 1 0 and the vector k which be denote by 0 0 1. These vectors have the 

property any two distinct vectors in this collection are orthogonal and every vector has 

length 1, when we generalize this notion we get the notion of and orthonormal set in a R 

k.  
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So, we have in R k, a set s equal to u 1, u 2, u k of vectors. So, if we take a set of vectors 

in R k is set to be orthonormal set, if if you take u i comma u j, the inner product between 

any two vectors, this must be equal to 0, if i not equal to j, 1 if i equal to j. Now, what 

does the first condition say, the first condition says i not equal to j that mean the distinct 

vectors then the inner product is 0 means there orthogonal. So, distinct vectors any 2 

distinct vectors in S are orthogonal. 

The second condition say if we take a vector and inner product with itself we get the 

square of the NORM, the NORM is 1 any, the second condition says that any vector in S 

has length 1. Our idea is to use this generalization of i, j, k vectors to similarly, generate 

a orthonormal basis analogous to the i, j, k basis for the R 3 to a general R k and use this 

construction of orthonormal basis to analysis our problem on the matrices. And the next 

lecture, we will look at the important notion of an orthonormal basis. 

 


