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In the last lecture, we studied finite dimensional spaces, and we observed the following 

simple properties. Suppose, V is a vector space over F, and W is a finite dimensional sub 

space of V. 



(Refer Slide Time: 00:46) 

 

What we observed for the following facts? If W had a basis having d vectors, then 

anything about the d must be linearly depended, then any set in W having more than d 

vectors is linearly dependent. 

(Refer Slide Time: 01:28) 

 

Now using this fact, we establish that all bases for W must be finite the moment, the W 

is a finite dimensional, it is one finite basis, and consequently all bases must be finite and 

all basis have the same number of vectors. So, the vectors may be different in different 



basis, but the number of vectors must be the same in every basis. This leads to the notion 

of the dimension of a sub space; the dimension was just the number of vectors in a basis.  

The dimension of any finite dimensional sub space is equal to the number of vectors in a 

basis. This symbol means number of vectors. So, the number of vectors in a basis is call 

the dimension of that space. In particular, if V itself is finite dimensional, we call it finite 

dimensional vector space, and a number of vectors in the basis will be called the 

dimension of that sub space. 
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Now, suppose V have a vector space, over a field F and we have a sub space W and 

dimension of W is d. Then, we observed by the same principle is above. Since, the 

dimension is d any d plus 1 vectors must be linearly depended. So, any set in W having 

more than d vectors must be linearly depended. 
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And more importantly, if we have n linearly d linearly independent vectors, they must 

necessarily form a basis for d. So, any linearly independents set in W having d vectors 

must be must necessarily be a basis for W. So, in d dimensional space any d linearly 

independent vectors will automatically for a basis. 
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We shall now look at, some more properties of finite dimensional spaces. More 

properties, these will the properties, which we saw the last lecture. Now, we look at more 

properties of finite dimensional sub spaces. So again, we have W contained in V, and 



dimension of W is said d. And suppose, we have a set S in W, which has r vectors and is 

linearly independent. I am considering a set S in W, which is r vectors and which is 

linearly independent.  
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So here is W and here is S and there are r vectors in this. And they are all linearly 

independent and we take dimension of W, we have take it to be d. Now since, W is d 

dimensional any d plus 1 vectors must be linearly dependent and therefore, since S is 

linearly independent, it cannot have more than d vectors. So, r is less than or equal to n. 

Since, S is linearly independent, and any set having greater than r is less than d, because 

we have taken d to be the dimension, any set having greater than d vectors, in W is 

linearly dependent. So, r is less than or equal to d. So therefore, the moment of we have a 

d dimensional sub space and if we take any linearly independent set it cannot have more 

than d vectors. 

 



(Refer Slide Time: 06:56) 

 

Now, let us look at this situation, r is less than or equal to d, so the two possibilities; 1 is 

r equal to d, the other 1 is r less than d. Let us look at this case r equal to d. If r equal to d 

then, S is a linearly independent set, because we have already assumed we are started 

with the linearly independent set, and it us now d vectors so, if we have set of d vectors 

which are linearly independent in a d dimensional space, we have said it must be a basis. 

That is S is a basis for W. 
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The next case is when r is less than d. If r is less then d, then obviously S cannot be a 

basis because any basis for W must have d vectors, but S has only r vectors, which is less 

than d. So, the first thing is S cannot be a basis for W, since it has less than d vectors. To 

form a basis, we need exactly d vectors, because the dimension is d and any basis must 

contain d vectors. So, S cannot be a basis. Why did it fail to a basis then, to be a basis a 

set has to be linearly independent and span this space. We have already assumed it is 

linearly independent, so the only way S can fail to be a basis is for not spanning W. So, S 

can only the way, the only way S can fail to be a basis for W is by L S being not equal to 

W. 
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So, what does it mean? We have W, in that we have S, which consists of u 1, u 2, u r and 

then, we look at L S, L S cannot be W. It has to be only a small part of W. And therefore, 

if L S is not W, there is something sitting in W, outside L S. Let us say, 1 such vector is 

V 1. So, there exist a V 1, which is in W, but which is not in L S.W minus L S. There is 

exist vector V 1 which is in W, but not in L S. But we have seen that, whenever we have 

a sub space, inside which we have a linearly independent set and we pick a vector 

outside the sub space, then these together must form still linearly independent set in the 

bigger space. So, we take this bigger space to be W, the sub space of W to be L S, 

something outside that and something linearly inside linearly independent inside that 

together, they must be linearly independent. Hence, we have u 1, u 2, u r with V 1, now, 

upended is linearly independent in W.  



Now, we started with r vectors linearly independent in W, since r was less than d, it was 

not adequate to span the whole space and therefore, it could not become a basis, it 

needed a help. So, we needed to supply more vectors. Now, we are supply one more 

vectors to the set S and made it us likely bigger linearly independent set. Now, if r plus 1 

is equal to d, then we have d linearly independent vectors in W and the moment we have 

d linearly independent vectors in a d dimensional space and hence a basis for W. If r plus 

1 is less than d, what we do is, we now look at this space span by, all this fellows 

together. If r plus 1 is less than d, then if I call this set S 1, L S 1 will still not span W. 

That means, I can pick another vector V 2 outside this. 
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So, there exits V 2 belonging in to W minus L S 1 such that u 1, u 2, u r, V 1, V 2 is 

linearly independent in W. Thus, we can go on expanding this set, 1 by 1 adding vectors 

from outside. So, continuing this process, d minus r times, we get vectors V 1, V 2, V d 

minus r, such that u 1, u 2, u d, u r, V 1, V 2, V d minus r is linearly independent in W. 

But now, there are d vectors there are r of them in the use in d minus r in the V they add 

up to totally d vectors and the moment we have d linearly independent vectors you have 

got a basis. And hence, these forms a basis for W since; there are d linearly independent 

vectors.  So, therefore,  either r is equal to d as in case 1, we had r equal to d, in which 

case the starting set itself was a basis or the case r less than d, we are able to go on 

supplying vectors V 1, V 2, V d minus r and thereby, making it a basis. So, either it is 



already begin of linearly independent set form a basis and if it is not begin of we can 

supply adequate numbers of vectors, that it is form a basis. 
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So, how do we conclude? So, the conclusion is that V vector space over F and we have 

W in V sub space dimension of W equal to d, the finite dimensional sub space then, any 

linearly independent set in W is, as in case one either already a basis, either basis for W 

or if it fails to be a basis. We can upend vectors to it and enough number of them, so that 

it forms of a basis. We get either this or it is can be extended, then we say extended we 

mean, we could upend more vectors to it, such that it is part of a basis. It is already a full 

basis or it is made a part of a basis is this is whole thing of basis and the u vectors are 

part of it. So either, the set is a basis any linearly independent set is the basis or it can be 

extended to be a part of a basis. That every linearly independent set can be slowly 

strengthened to become a basis. At least, we have a seen this works in the finite 

dimensional sub sets. 
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In particular, if V is a finite dimensional vector space, then any linearly independent set 

in V is either a basis for V or can be extended to be a part of a basis. 
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Let us, look at a simple example; let us take the space very simple space V to be F 3 and 

let us take this sub space W. We have seen this sub space before it consists of all the 

vectors in F 3, of the form alpha beta alpha plus beta, where alpha and beta belong to F. 

If we take F to be r, this is what be geometrically interpreted as, the z equal to x plus y 

plain. The third component is equal to the sum of the first two components. Consider this 



sub space, we have already seen, that say E 1 equal to 1 0 1 by taking alpha equal to 1 

and beta equal to 0, and E 2 by taking beta equal to 0 and beta equal to 1 and alpha equal 

to 0 is a basis for W is the basis for W. Because it is obviously, linearly independent and 

every vectors in W it is alpha times E 1 plus beta times E 2 for suitable alpha and beta.  
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So, this is a basis for W and how many vectors are there in this basis vectors and exactly 

two vectors and therefore, dimension of W is equal to 2. Now, suppose I take this set S, 

which is V 1 and V 2, where V 1 is the vector 1 1 2 and V 2 is the vector 1 minus 1 0, let 

us observe first of all S is linearly independent. Because you cannot get V 2 as a multiple 

of V 1, because V 1 has non 0 component as third to get V 2, we can only multiply V 1 

by 0, so we cannot get V 2 as a linear combination of V 1 similarly, we cannot get V 1 as 

linear combination of V 2 and therefore, V 1 and V 2 linearly independent. And these are 

vectors in W, because V 1 is obtained by taking alpha equal to 1 beta equal to 1 and V 2 

obtain by alpha equal to 1 and beta equal to minus 1.  

So, S is linearly independent. It is in W and there are exactly 2 vectors r in this case is 2, 

which is equal to d and therefore, S is a basis. Then never we have to linearly 

independent vectors it is automatically a basis. This is a case 1 that we discuss, whenever 

you take are 2 be 2, it is automatically a basis. 
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If we take now, S to be only this vector 1 1 2, let we call it as u 1, then this s cannot be a 

basis. Here, r is 1, which is less than 2 which was d but this is linearly independent. We 

have now started with linearly independent set, which is smaller in size then the given 

dimension. So therefore, how many vectors do we have to upend in order to expand it or 

extend it to a basis. The total dimension is 2, we already have 1 vector. So, r is 1, d is 2. 

We d d minus r vectors which is 2 minus 1, so we need to upend exactly 1 vector to the 

set to the get a basis. How do we upend this? We have this W; we had this S, now we are 

looking at L S. 

Our upending vector must come from outside L S. How does L S look like? This space 

span the S consists of all multiples of u 1, so L S vectors are of the form a a 2 a. Where a 

is in F. Because we have to multiples of u 1. That is only vectors that available in span L 

S, All must be just multiples of these vectors, u 1. L S vector of this form and we looking 

for V 1 outside L S. 
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So, we want V 1 belong in to W, but not in L S, W minus L S. So, it must be a vector in 

W, and therefore it must be a vector of this form alpha beta alpha plus beta, but it should 

not but be a vector in L S, therefore it should not be of the form a 2 a a a 2 a. So 

therefore, V 1 must be of the form alpha beta alpha plus beta for some alpha and beta, 

and not of the form a a 2 a. If it as to be of this form, and not of this form this means 

alpha and beta must be different, because the moment you take alpha and beta same, we 

get a vector of this form. So therefore, we must choose alpha and beta such that there are 

different. 
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So we have to choose, we can choose any alpha and beta as longer their alpha and beta 

different, we will get a vector outside L S. For example, we can choose alpha equal to 1, 

beta equal 2 and get V 1 as 1 2 3. This is certainly not in L S, because for something to 

be in L S, the first and the second components in must be equal, the third component is 

must be double in the first component. 
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This and therefore, u 1 v 1 now, is linearly independent. There are two vectors to form a 

basis, this form a basis. Now, we see that u 1 is part of this basis whatever linearly 

independent set you start with, you can make it a part of this basis. Note: our choice of v 

1 was not unique. Because always we to do was we can chosen alpha and beta that the 

alpha not equal to beta. We could chosen alpha is 1, beta is 0 or alpha is 36, beta is 27, 

whatever values we choose as long in alpha and beta are not equal, we will get a valid V 

1. Therefore, the choice of v 1 is not unique. Because we could have chosen any vector 

in W minus L S as V 1.  
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For example, take alpha is equal to 1, beta equal to minus 1, you get V 1 equal to 1 

minus 1 0. Then, this u 1, u 1 come back with this V 1 is also a basis. And therefore, 

when we say, that any linearly independent set can be extended to be a basis, the 

extended part is not unique. The starting part the given set as is a unique that is we want 

it to be a part of the basis and what we upend to make it basis that upended part can be 

chosen in any arbitrary manner. There are many ways are choosing it. Thus, the 

extension of a linearly independent set in W to be a basis for W is not unique. However, 

the fact of the matter is, that we can always extend. There should be at least one 

extension that is what is important for us. 
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Now, let us look at another property of finite dimensional spaces. Suppose, V is the 

vector space, over F and V itself it is finite dimensional, say dimension of V is equal to n. 

So, I start with the original mother space. The basic vector space, to be a finite 

dimensional vector space and we take the dimension to be equal to n. Now, suppose I 

taken sub space of W. So, W subspace, then any r plus 1 any n plus 1 vectors in V must 

be linearly dependent, because of dimension of V is n. So, any basis for W cannot have 

more than n vectors, because if you have more than n vectors it will automatically 

become linearly dependent. 
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So, since any set of vectors having more than n vectors is linearly dependent, any basis 

for W can have at most n vectors. Because the basis has to be the linearly dependent, if 

you more than n vectors become the linearly basis as to be linearly independent. If you 

go more than n vectors, it will become linearly dependent. And therefore, we cannot 

more than n vectors in still be linearly independent. So, to form a basis, we must have at 

most n vectors. That means, a basis for W can have at most n vectors that means the 

dimensional W can be at most n. Because dimension is the number of vectors in a basis 

and we have observe the number of vectors in a basis can be at most n. And hence, 

dimension of W has to be less than or equal to n. 
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If dimension of W is equal to n, then W has a basis consisting of how many vectors, 

because the dimension is n it has to have n vectors. Say u 1, u 2 extra u n. But then, the 

whole spaces of dimension n and we have seen that n dimensional space any and linearly 

independent vectors will form a basis, so these are n linearly independent vectors in V 

also, because there in W and W is part of V. Therefore, these are n linearly independent 

vectors in V and dimension of V is n and therefore, any linearly independent vectors n of 

them will form a basis for V, so  that says u 1, u 2, u n basis for V. Now, on the 1 hand is 

basis for W and therefore, it is spans W and the other hand is a basis for V and therefore, 

it is spans V. It spans W, it span V and since it spans same W must be equal to V. 
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Hence, L W is equal to this note L W; let us call this set as S. Hence, S is equal to u 1, u 

2, u n is such that L S is W, because S is basis for W and L S is V, because S is basis for 

V. Comparing the 2, we get W equal to V. So therefore, what is that we can conclude, if 

we take any sub space of an n dimensional space, it is dimension is less than or equal to 

n, but if it is dimension is n it is must be the whole space, otherwise is dimension is 

should be strictly less than n.  

So, we conclude that an any sub space of V, where V is dimension n, we are assuming 

that V is the vector space of dimension n is either V or has dimension less than 

dimension V. So, we let us assume the dimension of V equal to n. Suppose, we have 

finite dimensional space then any sub space of that vector space, must be either all of V 

are must have dimension much smaller at least 1 dimension smaller than V.  

Whenever, we want to conclude, that sub space is exactly equal to V, one way of 

showing is the both of them have the same dimension. Because we know now that if a 

sub space a as the same dimension of the whole space, it must be exactly equal to the 

whole space. These are the some of the simple basic properties of finite dimensional 

spaces and we shall be using them very regularly without ever mentioning them again 

and again, because these are so genetic and fundamental properties of a finite 

dimensional space.  



Now, we are going to look at this basis, remember we started with the notion of basis, 

from the idea that we are going to look at a sampling set and then we need set that we 

want a sampling set, we want to do proper sampling. We do not want to do over 

sampling; we do not want to do under sampling; we do not want to do over sampling 

means, we did not want redundant information, which means we do not want to do 

linearly dependent set. We do not want to do under sampling means, we want to do span 

to the whole space, we do not want to do miss any information, which simply means 

want to linearly independent spanning set and that let us to the notion of basis. Now, 

what is this sampling going to u and how does it help us. This is what we are going to 

study.  
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Now the role of a basis, will see what sort of help it does in our analysis. So, first of all 

let us say, V is a vector space of dimension n over F. We have a finite dimensional 

vector space; it is dimension is in n. Now, it can have any basis, but any basis must have 

exactly n vectors, because of the dimension is n. We now introduce the notion of an 

ordered basis. Well as the words just see is it is a basis the only difference is when we 

say basis we say a linearly independent set. 

It a set of vectors, when we say a basis we mean as set of vectors. In a set of vectors it 

does not matter, how we list the vectors in what order we list the vectors. For example, if 

we list the vectors as u 1, u 2, u 3 or we put u 2 first, u 1 next and u 3 later, it does not 



matter. In a set the order will which we list the vectors does not matter. However in a 

order basis, we not only have it as a set, we in is on a particular order in which will list 

the set. A basis for V in which the vectors are arranged in a fixed order is called an 

ordered basis.  
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For example, let us look at F 3, the vector space F 3. Now, we know that the set of 

vectors e 1, e 2, e 3 is a basis, where e 1 is 1 0 0, e 2 is 0 1 0, e 3 is 0 0 1. We know that 

this is a basis for this the space F 3. Now, if you look at this set, this B 1 as a set is the 

same as B, when not 2 sets equal if every element of B is also in B 1 and every element 

of B 1 is also in B. We look at that way these two sets are equal. So, B is equal to B 1. 

These are same basis. However, if we look at order in this there relate listed, the order is 

totally different. Here, e 1 comes first, in this basis e 3 comes first, in this basis e 2 come 

second, in this basis e 1 come second, in the basis e 3 comes third and here e 2 comes 

third. 
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However, as ordered basis B and B 1 are different. Because the vectors in the basis are 

ordered in a different order. So, thus we will be dealing with ordered basis going to want 

to be ordered basis. 
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Now, let us look at where this is leads to us. V finite dimensional vector space, 

dimension of V equal to n, now let us look at ordered basis how many vectors will be 

there in a ordered basis well, any basis will have n vectors, and in addition to that v level  

order. So let us put B as u 1, u 2 extra u n in ordered basis for B from now on will write 



ob for a ordered basis. So, the short form will be ob. So, let B - u 1, u 2, u n be an 

ordered basis for V. 
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Let us, take any vector x in V. Now, what you mean by being an ordered basis in V. First 

of all it is a basis. If it ever a basis, it must be linearly independent and it must be span 

the whole space. So in particular therefore, it is span must be equal to V. B is the ordered 

basis means, L B must be equal to B. Now, consider any vector x in V, that says since V 

is equal to L B, x is in L B. If x is in L B, that means x is a linear combination of B 

vectors. And therefore, there must exist suitable coefficient. So, there exist x 1, x 2, x n 

in F, such that x can be written as x 1 u 1 plus x 2 u 2 plus extra x n u n.  

Every vector in V, can be expressing the linear combination of this basis vectors. Now, 

we shall see that we have use that fact B is a basis, only up to this part namely that L B is 

V we have not yet use the fact that B is linearly independent. We will use the fact that B 

is linearly independent to establish that for every vector, this representation is unique. 

Now, we shell use the fact that B is linearly independent; because it is a basis it must be 

linearly independent. We shell use this pack the base linearly independent, to establish 

that the above representation, as a linear combination of the B vectors. The above 

representation of any x of x in V is unique. 
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What you mean by that? That is if that is if possible, let x have another representation. 

What do you mean by another representation? In the representation, we have the u 1, u 2, 

u n but that basis is fix we cannot change that the only thing that can change are this 

coefficients x 1, x 2, x n. We have another representation means some other co efficient 

times u 1 plus, some other co efficient times u 2 plus, some other co efficient times u n. 

Suppose, there is another such representation, on the 1 hand x is x 1 u 1 plus x 2 u 2 plus 

x n u n and the other hand x is equal to x 1 prime u 1 plus x 2 prime u 2 plus x n prime u 

n. Now, let us subtract these two representation let us subtract this from this, what you 

get the left hand side is x minus x which gives theta v.  

We get theta v, the right hand side we get x 1 minus x 1 prime u 1, we have x 1 minus x 

1 prime u 1 plus etcetera x n minus x n prime u n. However, we now know that B is a 

basis, any basis must be a linearly independent and therefore, u 1, u 2, u n are linearly 

independent vectors, but then once you have linearly independent vectors, the only linear 

combination that will give the 0 vector, if when you take all the co efficient as 0. 
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So, that implies x 1 minus x 1 prime equal to 0, x 2 minus x 2 prime is 0 and x n minus x 

n prime is 0, since u 1, u 2, u n are linearly independent. So, that says x 1 equal to x 1 

prime, x 2 equal to x 2 prime and so on x n equal to x n prime. So, these two 

representations are the same. x 1 u 1 again x 1 prime is x 1 only. So, there cannot be any 

other different representation, both must be the same representation. 
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So therefore, what is the conclusion that we have? The conclusion is if B equal to u 1, u 

2, u n and ordered basis for V. Then, every x in V has a unique representation x equal to 



x 1 u 1 plus x 2 u 2 plus x n u n, where the x j are all in F as a linear combination of the 

basis vectors. So, every vector as a linear combination of the basis vectors and there is 

one and only one way, what does that mean? It is something like if you know the x at the 

sampling points, these are this sampling points of the space V a basis is consider as the 

sampling set, if you know how the vector x behaves in this at the sampling point 

essentially, I can reconstructlly vectors. So, just that we do in signals. Here, we get a 

digitization of an abstract vector. 
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Thus, we can think of x has been made of these n scalars x 1, x 2, x n in F, through this 

basis B. Through this in other words, we had a vector which is an abstract quantity could 

be any type of vector space, i could be abstract vector space over a field F, but we could 

it always digitized and bring in back to the scalar level, there are n scalar, which has 

stored the information about this vectors. The moment is n scalar, the basis the sampling 

set B is known, when we can reconstruct the vector x as x 1 u 1 plus x 2 u 2 plus x n u n.  

So, we call x i as, so we call x i as the i th co ordinate as the i th co ordinate of the vector 

x, with respect to the ordered basis, because the order is important the moment which 

change the second to the third, then the second component will become a third 

component. The co ordinate or the component, it is also call the component co ordinate 

of x with respect to the ordered basis B. So once, we have an ordered basis for B, then 



every vector in V can be converted in to a set of n numbers or n scalar or n elements in 

the field F elements in the field are called scalar. 
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Now therefore, starting from x using the ordered basis B, we now get the n scalars, 

which I am going to write x 1 x 2 x n at the column matrix and this is obviously in F n. 

And this we call, we started from x, so x has some to do this. We use the basis B. So, B 

has something to do this. We denoted by x B. So, starting from an dimensional vector 

space F any vector x can be through an ordered basis converted to a vector in F n.  
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So, we have on the 1 hand we have vector space V over F, then we have this F n, we start 

with the basis B for this ordered basis, then once we have this any vector here, can be 

converted to a vector x B, in through this basis B in this basis F n. In other words, this is 

some kind of encoding of any vector in x as a vector in F n, are you can call it digitizing 

a vector in V, to a vector as a vector in F n. So, we encode x in V, as x B in F n.  

However, abstract the vector space V may be, as long as it is dimension is n. It can 

always we can converted to a concrete level of F n. F n is simply the standard n 

component matrix space. So, any abstract vector space, if it is dimension n by choosing 

suet any arbitrary ordered by basis of V. The every vector x can be translated; can be en 

coded; can be digitize. As a vector, x B in F n. Let us, look at some simple examples. 

Will begin with few simple examples. 
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Let us, look at the space V to be F 3. Always the starting example is F 3; because that is 

the if you take F to be a r. We get r 3 our standard 3 dimensional (( )) where, we are let 

us first take a basis B, which is ordered basis e 1, e 2, e 3 where e 1 is 1 0 0, e 2 is 0 1 0 

and e 3 is 0 0 1. This is our standard ordered basis. If, you now take any vector x in F 3, 

it must be of the form x is equal to x 1 x 2 x 3. Now, how does this encoding take place, 

through a basis? We must express, this vector x as the linear combination of the B 

vectors. We have here, B x is equal to x 1 e 1 plus x 2 e 2 plus x 3 e 3. The first 



component of x with respect to this basis is x 1, second component is x 2 and third 

component is x 3 and therefore, the encoding in just it this is standard encoding.  
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Suppose, I take the basis same vectors, but now I change the order. So, this is the same 

basis. I am going to choose, but now I am going to change the order vectors will be the 

same. So, I am going to take u 1, u 2, u 3, where u 1 is 0 1 0, u 2 is 0 0 1 and u 3 is 1 0 0. 

So, this is the e 2 of the previous case, the second vector of the previous basis is the first 

vector become of this basis. The third vector of the previous basis, become the second 

vector of this basis and the first vector of the previous basis, become the third vector here. 

We have the same basis set, but we have now a different order.  

Now if we take any vector x in F 3, x is the form of x 1 x 2 x 3 then, x is now x 2 times u 

1 plus x 3 times u 2 plus x 1 times u 3. So, what is the first component of x with respect 

to this ordered basis it is x 2. The second component of this vector, now the same vector, 

but now we are asking for the second component with respect to the new basis. It is now, 

x 3 and third component is x 1 and therefore, the digitization of this vector, with this 

ordered basis is x 2 x 3 x 1. 
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Let us choose another basis. Let us take V 1 to be V 1, V 2, V 3. Where V 1 is 1 1 0 and 

V 2 is 1 0 minus 1 and V 3 is 0 1 minus 1. Now, if we take any vector x, which is in F 3, 

x is of the form x is equal to x 1 x 2 x 3 and we can verify, that such a vector x will be 

equal to x 1 plus x 2 plus x 3 by 2 in to V 1 plus x 1 minus x 2 minus x 3 by 2 in to V 2 

plus minus x 1 plus x 2 minus x 3 by 2 in to V 3. And therefore, the new components in 

terms of this, new basis are x 1 plus x 2 plus x 3 by 2 x 1 minus x 2 minus x 3 by 2 and 

minus x 1 plus x 2 plus x 3 by 2. 
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And therefore, we get x of B 1 is x 1 plus x 2 plus x 3 by 2, x 1 minus x 2 minus x 3 by 2, 

minus x 1 plus x 2 minus x 3 by 2 this vector. So, the same vector will have different 

digitization, different encodings, in terms of different ordered basis. Of course, the 

natural thing therefore is look for a basis, which give as simplest digitization where the 

representation becomes simple. 

Nevertheless there is a fundamental question that remains. After all if you look at the 3 

representation that we have, it is the same vector x 1 x 2 x 3, but we have used 3 

different basis, we have use first the u 1 u 2 u 3, then we have used this basis, and then 

we use this V 1 basis, and we get different representations. After all they all represent the 

same vector. x B - x B had x be 1, all of them represent the same vector x. And therefore, 

they must be some have related, what is this relation? This is being the topic for the next 

lecture.   


