
EXCELing with Mathematical Modeling 

Prof. Sandip Banerjee 

Department of Mathematics 

Indian Institute of Technology Roorkee (IITR) 

Week – 06 

Lecture – 26 (Horizontal Oscillations) 

 

 

Hello welcome to the course EXCELing with Mathematical Modeling. 

 

Today we will be talking about horizontal oscillations and how to model those kind of 

oscillations. 

 

So, if you consider this string and the mass attached to it, as you can see that the surface is we 

assume to be frictionless and there is an oscillation of this particular object moving to and fro. 

 

So, to model this kind of phenomena, so we say that a particle of mass 𝑚 say it rests at this point 

A and there are two forces which is acting on it. 

 

          
 

One is this force 𝑂1 origin, another is force 𝑂2, the origin is 𝑂2 and the law of force is 

 

𝑚 𝜇1
𝑛(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)𝑛 

 

towards this force 𝑂1 and  

𝑚 𝜇2
𝑛(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)𝑛 

towards the fixed centre 𝑂2. 

 

So, at the point A both the forces are acting and the particle is in equilibrium. So, the forces are 

equal and opposite. So, as you can see that this 𝑂1, A and this 𝑂2 they are in a straight line and 

hence they are called collinear.  

 

Now a small push is given to the right hand side. So, it disturbs the equilibrium we assume that 

it is a stable equilibrium. So, if it is given a small push to the right, the tendency will be to maintain 

the equilibrium the stable equilibrium that it will go back to its original position. 

 

So, we assume that let after the push let P be the position of the particle at any time t and the 

tendency of this particle is to move back towards the point A. So, in such a scenario, let us see 

what happens. 

 

 

So, we assume that this 𝑂1𝑂2 = 𝑎, 𝑂1𝐴 = 𝑑1, 𝐴𝑂2 = 𝑑2. 



So, basically if I add 𝑑1 + 𝑑2 = 𝑎 and since this force the at the point A, forces are equal and 

opposite because the particle is in equilibrium. 

 

So, both the forces are keeping this particle at this point A in equilibrium and therefore the law  

 

 𝜇1
𝑛(𝑑1)𝑛. 

 

 So the distance from here is 𝑑1 and from here is 𝑑2. So that must be equal to 

 

 𝜇2
𝑛(𝑑2)𝑛 

If I simplify this a bit, this will be 

 

𝜇1
𝑛(𝑑1)𝑛 =  𝜇2

𝑛(𝑑2)𝑛    ⟹ 𝜇1𝑑1 = 𝜇2𝑑2 
 

⟹
𝜇1

𝑑2
=

𝜇2

𝑑1
=

𝜇1 + 𝜇2

𝑑1 + 𝑑2
=

𝜇1 + 𝜇2

𝑎
 

  

⟹  𝑑2 =
𝑎𝜇1

𝜇1 + 𝜇2
   and  𝑑1 =

𝑎𝜇2

𝜇1 + 𝜇2
 

 

So, I get the distance in terms of 𝑎, 𝜇1, 𝑎𝑛𝑑  𝜇2.  
 

 

Now let us consider the particle is given a small push towards 𝑂2 and let P be the position at any 

time t. So, the particle is slightly displaced from the equilibrium position A to the position P and 

it will be it will have a tendency to move towards the point A and let us take this AP to be some 

x. So your equation of motion, the left hand side, is given by  𝑚 
𝑑2𝑥

𝑑 𝑡2. 

 
Now there are two forces, one is acting at the point 𝑂1, another is acting at the point 𝑂2. 

 

So if the particle is at the point P, its tendency will be to move towards this 𝑂1 so that we assume 

that the equilibrium is stable. 

 

So if it moves towards this 𝑂1 then this 𝑂1 becomes an attractive force and this 𝑂2 becomes a 

repulsive force. 

 

So here is what you have to understand that, okay here is your point A and you are giving a push 

in this side. This is your 𝑂2 and this is your 𝑂1. 

 

If the particle is not in equilibrium, then it is going towards this direction and then your 𝑂2 would 

have been the point of attraction and 𝑂1 the point of repulsion. 

 

But in this case at this point A, the particle is in equilibrium and we assume it is a stable 

equilibrium. 

 

So, if you now give a small push and by the differentiation of stable equilibrium this will tend to 

come back to its original position A and in doing so, it is its actually motion will be like this and 

if it is actual motion is like this after the push, then 𝑂1 becomes the point of attraction and 

𝑂2 becomes the point of repulse. 



Now if 𝑂1 is the point of attraction, so let us see what is the force acting on this. So, by the 

definition it is given that it is  

 𝑚 𝜇1
𝑛(𝑂1𝑃)𝑛. 

And for the 𝑂2 it is 

𝑚 𝜇2
𝑛(𝑂2𝑃)𝑛. 

 

 Now which one will be positive and which one will be negative. 

 

So as I have explained that it is moving towards 𝑂1 after the push to maintain the equilibrium 𝑂1 

becomes the point of attraction and if the force is attractive, you have a negative sign and 𝑂2 

becomes the pulse of repulsion and if the force is repulsive, we have a positive sign. So that is 

how your sign is determined. 

 

So, equation of motion is 

𝑚
𝑑2𝑥

𝑑 𝑡2
= − 𝑚 𝜇1

𝑛(𝑂1𝑃)𝑛 + 𝑚 𝜇2
𝑛(𝑂2𝑃)𝑛 

 

⟹   𝑚
𝑑2𝑥

𝑑 𝑡2
= − 𝑚 𝜇1

𝑛(𝑑1 + 𝑥)𝑛 + 𝑚 𝜇2
𝑛(𝑑2 − 𝑥)𝑛 

 

⟹   
𝑑2𝑥

𝑑 𝑡2
= −  𝜇1

𝑛(𝑑1 + 𝑥)𝑛 +  𝜇2
𝑛(𝑑2 − 𝑥)𝑛 

 

⟹   
𝑑2𝑥

𝑑 𝑡2
= −  𝜇1

𝑛𝑑1
𝑛  (1 +

𝑥

𝑑1
)

𝑛

+  𝜇2
𝑛𝑑2

𝑛 (1 −
𝑥

𝑑2
)

𝑛

 

 

The next step is we expand them binomially so 

 

𝑑2𝑥

𝑑 𝑡2
= −  𝜇1

𝑛𝑑1
𝑛  (1 +

𝑛𝑥

𝑑1
+

𝑛(𝑛 − 1)

2!

𝑥2

𝑑1
2 + ⋯ ) +  𝜇2

𝑛𝑑2
𝑛  (1 −

𝑛𝑥

𝑑2
+

𝑛(𝑛 − 1)

2!

𝑥2

𝑑2
2 + ⋯ ) 

 

And, since x is small, this will be approximately equal to, so we neglect the square and the higher 

terms, and you will be getting  

𝑑2𝑥

𝑑 𝑡2
= −  𝜇1

𝑛𝑑1
𝑛  (1 +

𝑛𝑥

𝑑1
) +  𝜇2

𝑛𝑑2
𝑛  (1 −

𝑛𝑥

𝑑2
), 

 

 𝑥2 and higher powers of x are neglected because x is small. So, if we simplify this  

 

𝑑2𝑥

𝑑 𝑡2
= −  𝜇1

𝑛𝑑1
𝑛 − 𝑛𝑥  𝜇1

𝑛𝑑1
𝑛−1 +  𝜇2

𝑛𝑑2
𝑛 − 𝑛𝑥𝜇2

𝑛𝑑2
𝑛−1

 

 

Now in the equilibrium position    𝜇1
𝑛𝑑1

𝑛 =  𝜇2
𝑛𝑑2

𝑛
  and we are left with 

 

𝑑2𝑥

𝑑 𝑡2
= − 𝜇1

𝑛  (
𝑎𝜇1

𝜇1 + 𝜇2
)

𝑛−1

𝑛𝑥 − 𝜇2
𝑛 (

𝑎𝜇1

𝜇1 + 𝜇2
)

𝑛−1

𝑛𝑥.    

 

So, what I did is, I substitute the value of 𝑑1 and I substitute the value of 𝑑2, which we have 

calculated here. 



And if I simplify this, I will be getting 

 

𝑑2𝑥

𝑑 𝑡2
= −  (

𝑎𝜇1𝜇2

𝜇1 + 𝜇2
)

𝑛−1

𝑥    

 

So, this equation is of the form  

𝑑2𝑥

𝑑 𝑡2
= −𝜆2 𝑥     

 

and this is a known form equation which gives you a simple harmonic motion. 

 

So, the motion of the particle in this case is simple harmonic and the period of oscillation will be 

 

2𝜋

√𝜆2
=

2𝜋

𝜆
, where     𝜆 = √(

𝑎𝜇1𝜇2

𝜇1 + 𝜇2
)

𝑛−1

.  

 

So in case of this horizontal oscillation, we see that it gives to a simple harmonic motion with 

period 
2𝜋

𝜆
 , where 𝜆  is given by square root of this quantity. 

 

Now let us consider a case where there is a damped oscillation. By damped oscillation means 

there will be some force which will be opposing this motion. So, let us see what happens. 

 

So, if you consider a damped oscillation in this particular video you will see that this spring is 

having an oscillation though in this case it is a vertical one, but some force is acting on it and you 

can see that the curve, it is though giving a cycle but that cycle is slowly decreasing with respect 

to time because there is a force which is working against this motion it is not frictionless at all 

and slowly that curve decreases and ultimately it will go to zero. 

 

    



So this is what happens during this damped oscillation. 

 

So that damped oscillation law can be anything so you can take that your original equation was  

 

𝑑2𝑥

𝑑 𝑡2
= − 𝜇2𝑥  

 

anyway it was 𝜆 but let us take 𝜇, really does not matter, and let us there be a force which varies 

as the velocity. 

 

So, if there is a force which is acting against it and varies as the velocity, so we can put it some  

 

𝑑2𝑥

𝑑 𝑡2
= − 𝜇2𝑥 − 𝑘

𝑑𝑥

𝑑𝑡
 

 

To make it a bit convenient for our calculation, I can put 2k instead of k and we get 

  

𝑑2𝑥

𝑑 𝑡2
= − 𝜇2𝑥 − 2 𝑘

𝑑𝑥

𝑑𝑡
 

 

If I want an additional force, other than this damping effect, I add up a periodic acceleration of 

the form F cos(𝑏𝑡). 

 

So, in this particular case we are adding two things, one is this damping force, another is this 

additional periodic force. 

 

 So, basically if your string or your spring is like this and it is moving to and fro. 

 

So, what is happening is as it moves this side there will be a force which will oppose and it varies 

as the velocity. So, this is 2kv, plus there is an additional disturbing force which is of the form a 

periodic one F cos(𝑏𝑡). 

 

So, what will happen if we consider such case?  

 

So, in that case your equation of motion will be some 

 

𝑑2𝑥

𝑑 𝑡2
= − 𝜇2𝑥 − 2𝑘

𝑑𝑥

𝑑𝑡
+ F cos(𝑏𝑡) 

 

⟹ (𝐷2 + 2𝑘𝐷 + 𝜇2)𝑥 = F cos(𝑏𝑡) 
 

So, this is a second order differential equation where your operator  

𝐷 ≡
𝑑

𝑑𝑡
 

 

So, if you are familiar with this kind of equation which you should be, then you know that we 

take the solution of the form  

𝑥 = 𝐴𝑒𝑚𝑡  
 

and we have two parts of the solution as a general solution. 



 

First is the complementary function and another is the particular integral. 

 

So for the complementary function, we first take  

 

𝑥 = 𝐴𝑒𝑚𝑡  
 be the trial solution and then your  

 

𝐷 ≡
𝑑𝑥

𝑑𝑡
= 𝐴𝑒𝑚𝑡 ,

𝑑2𝑥

𝑑 𝑡2
= 𝐴 𝑚2𝑒𝑚𝑡  

 

You substitute both of them here, you get  

 

𝑚2+2𝑘𝑚 + 𝜇2 = 0      
as your auxiliary equation. 

 

So you solve for m which will give you  

 

𝑚 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
= −𝑘 ± 𝑖√𝜇2 − 𝑘2 

 

I assume that 𝜇 > 𝑘 

 

So, your complementary function will be  

 

𝐶. 𝐹. = 𝑒−𝑘𝑡 𝐴1 cos (√𝜇2 − 𝑘2 𝑡) + 𝜖1 

 

If you are not familiar with the second order differential equation, you just have to go through it, 

this is quite I mean a simple solution. So, you need to know how to solve this kind of differential 

equation. 

 

So, after this we look for the so this is the complementary function and then you have to look for 

the particular integral and to do that you have to write 𝑥𝑝 so for the particular integral 

 

This is  

𝑥𝑝 =
1

(𝐷2 + 2𝑘𝐷 +  𝜇2
F cos(𝑏𝑡) 

 

This I write it as  

𝐷2 + 𝜇2 − 2𝑘𝐷

(𝐷2 + 𝜇2)2 − 4 𝑘2𝐷2
F cos(𝑏𝑡) 

 

 

So, what I did is I have taken this as 𝐷2 + 𝜇2 + 2𝑘𝐷 and multiply both numerator and 

denominator by 𝐷2 + 𝜇2 − 2𝑘𝐷 

 

So, the denominator becomes A2 − B2, this is the part with which we have multiplied and here it 

is F cos(𝑏𝑡) and by the rule it says that you replace this 𝐷2 by −𝑏2, 



 

and you will get 

𝑥𝑝 =
𝐷2 + 𝜇2 − 2𝑘𝐷

(−𝑏2 +  𝜇2)2 + 4 𝑘2𝑏2
F cos(𝑏𝑡) 

  

So, you have replaced this 𝐷2  by −𝑏2 and hence this becomes plus.  

 

 

So this part is the constant  

𝑥𝑝 =
𝐷2 + 𝜇2 − 2𝑘𝐷

( 𝜇2−𝑏2)2 + 4 𝑘2𝑏2
F cos(𝑏𝑡) 

 

So if you multiply this F cos(𝑏𝑡) with each of this, what you are going to get is  

 

𝑥𝑝 =
𝐷2 F cos(𝑏𝑡) + 𝜇2 F cos(𝑏𝑡) − 2𝑘𝐷 F cos(𝑏𝑡)

( 𝜇2−𝑏2)2 + 4 𝑘2𝑏2
 

 

 

Now D of F cos(𝑏𝑡) is nothing but that you have to differentiate this particular function, so this 

will be  −F sin(𝑏𝑡). 

 

So, if you do that, you will get it in the form  

 

𝑥𝑝 =
(𝜇2−𝑏2)  cos(𝑏𝑡) + 2𝑘𝑏  sin(𝑏𝑡)

( 𝜇2−𝑏2)2 + 4 𝑘2𝑏2
 

 

The next thing what you have to do is, so if I write the general solution 

 

 

𝑥 = 𝑒−𝑘𝑡 𝐴1 cos (√𝜇2 − 𝑘2 𝑡) +
(𝜇2−𝑏2)  cos(𝑏𝑡)

( 𝜇2−𝑏2)2 + 4 𝑘2𝑏2
+ +

2𝑘𝑏  sin(𝑏𝑡)

( 𝜇2−𝑏2)2 + 4 𝑘2𝑏2
 

 

 

As such this is the solution but we simplify a bit for the better understanding of the problem. 

 

So, what you do is you put  

 

 
(𝜇2−𝑏2)

( 𝜇2−𝑏2)2 + 4 𝑘2𝑏2
= cos 𝜖2    and 

2𝑘𝑏

( 𝜇2−𝑏2)2 + 4 𝑘2𝑏2
= sin 𝜖2. 

 

So, they come in a formula and you will get this as  

 

𝑥 = 𝑒−𝑘𝑡 𝐴1 cos (√𝜇2 − 𝑘2 𝑡) + cos 𝜖2   cos(𝑏𝑡)  +  sin(𝑏𝑡) sin 𝜖2 

 

⟹   𝑥 = 𝑒−𝑘𝑡 𝐴1 cos (√𝜇2 − 𝑘2 𝑡) +  cos(𝑏𝑡 − 𝜖2) 

 

 



where  

tan 𝜖2 =
2𝑘𝑏

𝜇2 − 𝑏2
 ⟹  𝜖2 = tan−1

2𝑘𝑏

𝜇2 − 𝑏2
 

 

So, now what can you tell about the solution? 

 

So, we have a damping force and an additional periodic force disturbing the motion. 

 

So, from here you can see that this will give to a damping oscillation, that is, it will start with a 

normal oscillation and slowly it will die out, and then this is going to give another oscillation. 

 

        
 

So, if you plot this solution you will get it like this that it has started with an oscillation and 

because of that damping factor  

 

𝑒−𝑘𝑡 𝐴1 cos (√𝜇2 − 𝑘2 𝑡 + 𝜖1) 

 

because of this 𝑒−𝑘𝑡 this is going to die out. But there is a factor  

 

𝑒−𝑘𝑡 𝐴1 cos (√𝜇2 − 𝑘2 𝑡 + 𝜖1) + B cos(𝑏𝑡 − 𝜖2) 

 

and due to this factor again it is going to give you this periodic solution. 

 

So, this is called the free oscillation but a damped one and this is called the forced oscillation. 

 

So with this, we come to the end of this lecture about this horizontal oscillation and how you can 

model some particular situations. 

 

In our next lecture, we will be taking up the vertical oscillations.  Till then, bye bye.  


