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Hello, welcome to the course EXCELing with Mathematical Modelling. 

 

In this particular session, we will be solving some typical problems on stability analysis, namely, 

using this Lyapunov function. 

 

So, to start with, let us consider the dynamical system 

 
𝑑𝑥

𝑑𝑡
= 𝑦 ,

𝑑𝑦

𝑑𝑡
=  −𝑎 𝑠𝑖𝑛𝑥 − 𝑏𝑦 , 𝑎, 𝑏 > 0. 

. 

So, if you recall the Lyapunov function which we have taken to be V(x,y). 

 

So, if you can find a Lyapunov function V(x,y) such that this is positive definite, V(0,0) has to be 

zero assuming (0,0) to be the equilibrium point or critical point or fixed point. 

 

If you assume that to be 𝑥∗ and 𝑦∗, generalize it, so you can put them as 𝑉(𝑥∗,𝑦∗)   and 𝑉 ̇ , this 

has to be negative semi definite. 

 

So, by this I mean this has to be  

 

𝑉(𝑥, 𝑦) > 0, ∀ (𝑥, 𝑦) ≠ (0,0)            … (𝑖) 
 

𝑉̇(𝑥, 𝑦) ≤ 0, ∀ (𝑥, 𝑦) ≠ (0,0)          … (𝑖𝑖) 

 

𝑉̇(𝑥, 𝑦) < 0, ∀(𝑥, 𝑦) ≠ (0,0)  ….          (𝑖𝑖𝑖)     
 

for (ii) it is Lyapunov stable and for (iii) it is asymptotically stable. 

 

Now, in this particular problem you have to choose and again I say that there is no hard and first 

rule you have to figure out by yourself and it will come with practice. 

 

So, in this particular case it cannot be x2 + y2 because we have some sin x here. 

 

So, you have to choose it in such a clever way that 

𝑉(𝑥, 𝑦) = 𝑎(1 − 𝑐𝑜𝑠𝑥) +
1

2
𝑦2 

You will understand why this 
1

2
  has come. 

 

If you do not take  
1

2
  here, you will face some problem and ultimately you will bring that value 

to half, so which you will realize soon. 



So, 𝑎(1 − 𝑐𝑜𝑠𝑥) +
1

2
𝑦2 > 0 for all (𝑥, 𝑦) ≠ (0,0). 

 

This is obviously true because it contains a square and we know that the value of −1 ≤ 𝑐𝑜𝑠 ≤ 1 

 

So, this value is positive also for (𝑥, 𝑦) ≠ (0,0), a > 0. 

 

Now, if I put 𝑥 = 0 and 𝑦 = 0, I see that the right hand side has been satisfied. 

 

So, (0 0) is my equilibrium point. 

 

So, I find V(0,0). 

𝑉(0,0) = 𝑎(1 − cos(0)) +
1

2
02 = 0 

 

Now let us calculate 𝑉̇. 

 

𝑉̇ =  
𝜕𝑉

𝜕𝑥
𝑥̇ +

𝜕𝑉

𝜕𝑦
𝑦̇  = 𝑎 sin 𝑥 (𝑦) +

1

2
 2𝑦 (−𝑎 sin 𝑥 − 𝑏𝑦) 

                                                             =  𝑎 𝑦 sin 𝑥 −  𝑎 𝑦 sin 𝑥 − 𝑏𝑦2 =  −𝑏𝑦2  
 

So, the coefficient of this particular term becomes (-1) only if you choose this value to be 
1

2
  . 

 

So if you choose it something else suppose, I keep it only 𝑦2 this becomes only 2y so −2𝑎𝑦𝑥, 

then I would not be able to prove that this is negative definite. 

 

So to make this one and this one cancel this particular constant has been chosen. 

 

So, as I have told you that there is no hard and first rule, it will come with practice and at the 

same time, this Lyapunov function is not unique, it can take any form, for one form you may get 

the conditions to be satisfied, for other forms you may not. So, you have to keep on playing with 

it. So, this you get  

𝑉(𝑥, 𝑦)̇ =  −𝑏𝑦2 < 0 ∀ (𝑥, 𝑦) ≠ (0,0). 
 

So, this satisfies negative definite and you can say that the origin is asymptotically stable. 

 

So this is one particular example where we have non-algebraic term, mainly, the trigonometric 

term as sin 𝑥. 

 

 Let us move to the next example 

 

     
𝑑𝑥

𝑑𝑡
= 𝑦,            

𝑑𝑦

𝑑𝑡
=  −𝑥 − 𝑦 

.  

So let us choose 

𝑉(𝑥, 𝑦) = 2𝑥2 + 𝑦2 > 0, ∀(𝑥, 𝑦) ≠ (0,0) 
 

𝑉(0,0) = 0.                                                    
 

So, from here, I will get (0,0) as my equilibrium point. 



And now comes  
𝑑𝑉

𝑑𝑡
= 𝑉̇ =  

𝜕𝑉

𝜕𝑥
𝑥̇ +

𝜕𝑉

𝜕𝑦
𝑦̇ = 4𝑥𝑦 + 2𝑦 (−𝑥 − 𝑦) 

 

= 4𝑥𝑦 − 2𝑥𝑦 − 2𝑦2 = 2𝑥𝑦 − 2𝑦2. 
 

So, the conclusion is with this form of Lyapunovn function, your definiteness cannot be 

determined. Hence, I cannot conclude about stability with this form of Lyapunov function. 

 

Now, to make this two terms to cancel each other, if I just take this to be 𝑉(𝑥, 𝑦) = 𝑥2 + 𝑦2, then 

you see that here your  

 

𝑉̇ = 2𝑥𝑦 (𝑦) + 2𝑦(−𝑥 − 𝑦) = 2𝑥𝑦 − 2𝑥𝑦 − 2𝑦2 =  −2𝑦2 < 0. 
 

So this is exactly what I was telling, that with one form of Lyapunov function you may get to 

prove the stability of the system, and with another form you may not. 

 

So, you have to choose your Lyapunov function cleverly, such that everything all the conditions 

are satisfied. 

 

Now, let us take an example where if it is an algebraic terms on the right hand side like 

 
𝑑𝑥

𝑑𝑡
= −3𝑥3 − 𝑦,

𝑑𝑦

𝑑𝑡
= 𝑥5 − 2𝑦3. 

 

Now this right hand side you can see there are higher degrees of polynomials. 

 

In that particular case an attempt can be made like this, that you choose your Lyapunov function 

in this form 

𝑉(𝑥, 𝑦) = 𝑎𝑥2𝑚 + 𝑏𝑦2𝑛  , (𝑎, 𝑏 > 0) 
 

 and from here you can see that (0 0) is your equilibrium point. 

 

Now, you have to find a suitable m and n here. So, what you have to do is, so the first two 

properties are satisfied that this will always be positive for non-zero x and y and at the point (0,0), 

they become zero. 

 

So you start with  

  

𝑉̇ =  
𝜕𝑉

𝜕𝑥
𝑥̇ +

𝜕𝑉

𝜕𝑦
𝑦̇ = 2𝑎𝑚𝑥2𝑚−1(−3𝑥3 − 𝑦) + 2𝑏𝑥𝑦2𝑛−1(𝑥5 − 2𝑦3) 

 

So, instead of guessing the values of m and n, this is a systematic manner by which you can find 

the value of m and n. So,  

 

𝑉̇ = −6 𝑎𝑚𝑥2𝑚+2 − 2𝑎𝑚𝑥2𝑚−1𝑦 + 2𝑏𝑛𝑥5𝑦2𝑛−1 − 4𝑏𝑥𝑦2𝑛+2 
 

So, this term is fine, this term is fine, problem is with these terms which are called indefinite 

terms. 

 



So, you have to choose in the values of m and n in such a manner that these two term cancels out 

and for that what you have to do, the power of x's and the power of y's has to be same. 

 

So, you choose   

           𝑥2𝑚−1 = 𝑥5   ⟹   2 𝑚 − 1 = 5  ⟹   𝑚 = 3. 
 

Similarly, you can choose 

 

           𝑦2𝑛−1 = 𝑦1 ⟹  2𝑛 − 1 = 1   ⟹    𝑛 = 1 
 

So, m = 3 and n = 1 gives you the Lyapunov function 

 

𝑉̇ = −18𝑎𝑥8 − 6𝑎𝑥5𝑦 + 2𝑏𝑥5𝑦 − 4𝑏𝑦4. 
 

So, you have got the powers of x and y is same, but now you have to choose your values of a and 

b in such a manner that these two cancels out. So, if you choose 𝑎 = 1, 𝑏 = 3, 

 

 

𝑉̇ =  −18𝑥5 − 6𝑥5𝑦 + 6𝑥5𝑦 − 12𝑦4 =  18𝑥5 − 12𝑦4 < 0, ∀(𝑥, 𝑦) ≠ (0,0). 
 

Hence the system is asymptotically stable. 

 

If you want to check the global stability, so you have to show that the system is radially 

unbounded. 

 

So, what does that mean? 

 

 It says that  

 

𝑉(𝑥, 𝑦) → ∞    𝑎𝑠 ‖(𝑥, 𝑦)‖ → ∞. 
 

So, by norm you mean the distance and here it is the distance of (x,y) from the origin, from the 

equilibrium point. 

 

So, if you use the distance formula 

 

‖(𝑥, 𝑦)‖ = √(𝑥 − 0)2 + (𝑦 − 0)2 = √(𝑥)2 + (𝑦)2 

 

𝑉(𝑥, 𝑦) = 𝑥6 + 3𝑦2.  
 

As  𝑥 → ∞, 𝑦 → ∞,   ‖(𝑥, 𝑦)‖ → ∞ and 𝑉 → ∞. 
 

 

So, you show that the system is radially unbounded and hence it is also globally asymptotically 

stable. 

 

So, this is another technique of finding this expression for Lyapunov function, but it works on 

only certain sets of problem, where the right hand side are higher powers of polynomial. 

 

 



In our next example, we take an equation and prove where you have an equilibrium point   

(𝑥∗, 𝑦∗) ≠ (0,0). So, 

 
𝑑𝑥

𝑑𝑡
= 𝑥 − 𝑥𝑦 = 𝑓(𝑥, 𝑦).      

 
𝑑𝑦

𝑑𝑡
= −𝛾𝑦 + 𝑥𝑦 = 𝑔(𝑥, 𝑦). 

 

So, let us take this particular example. 

 

𝑥 − 𝑥𝑦 = 0 ⟹ 𝑥(1 − 𝑦) = 0.    … (𝑖) 
 

⟹  𝑥 = 0, 𝑦 = 1. 
 

My second equation  

−𝛾𝑦 + 𝑥𝑦 = 0 ⟹ 𝑦(−𝛾 + 𝑥) = 0.     … (𝑖𝑖) 

 

⟹  𝑦 = 0, 𝑥 = 𝛾. 
 

If I put x = 0 in (ii), it implies y = 0. So, one of the equilibrium point is (0,0). 

 

 If I put y =1 in (ii), then x = 𝛾. So, (𝛾, 1) is another equilibrium point. 

 

This time we will be checking the stability at the point (𝛾, 1) where  𝛾 > 0. 

 

So, if I use Lyapunov's indirect method, then I have to write the matrix  

 

𝐴 = (
𝑓𝑥 𝑓𝑦

𝑔𝑥 𝑔𝑦
) 

 

So if I calculate this,  

𝐴 = (
1 − 𝑦 −𝑥

𝑦 −𝛾 + 𝑥
)

(𝑥∗,𝑦∗)=(𝛾,1)

= (
0 −𝛾
1 0

). 

 

So, the eigenvalues can be calculated from this characteristic equation 

 

|𝐴 − 𝜆𝐼| = 0 ⟹  |
−𝜆 −𝛾
1 −𝜆

| = 0 ⟹  𝜆2 + 𝜆 = 0 ⟹ 𝜆 = ±𝑖√𝛾 . 

 

So, this gives a centre, because it has only imaginary roots, which is stable but not asymptotically. 

Now, this is Lyapunov indirect method. 

 

Let us now use the Lyapunov's direct method where we use the function 𝑉(𝑥, 𝑦 ) and instead of 

taking (0,0) we take (𝛾, 1) to be our equilibrium point. 

 

As I told you Lyapunov function they becomes typical for a particular problem. 

 

Like in this problem let us define a function 

 



𝐻(𝑥, 𝑦) = 𝑥∗  ln 𝑥 − 𝑥 + 𝑦∗  ln 𝑦 − 𝑦.    … (𝑖𝑖𝑖) 
 

Now obviously you will be wondering that how suddenly this function has come, as I told you it 

will come with practice and with various examples, where you will see many many forms of this 

Lyapunov function and when you take an unknown problem you will be able to figure out. 

 

So,(𝑥∗, 𝑦∗) = (𝛾, 1) . So, if I put it (iii) that is 

 

𝐻(𝑥, 𝑦) = 𝛾 ln 𝑥 − 𝑥 + ln 𝑦 − 𝑦. 
 

This is not my Lyapunov function the notation remains the same, it is 

 

 𝑉(𝑥, 𝑦) = 𝐻(𝑥∗, 𝑦∗) − 𝐻(𝑥, 𝑦).  
 

Now why this has been done, because otherwise if you substitute the value (𝛾, 1)  here, this will 

not be equal to 0 and that is one of the condition. 

 

So this will be  

 

 𝑉(𝑥, 𝑦) = 𝛾 ln 𝑥∗ − 𝑥∗ + ln 𝑦∗ − 𝑦∗ − (𝛾 ln 𝑥 − 𝑥 + ln 𝑦 − 𝑦) 
 

= (𝛾 ln 𝛾 − 𝛾 + ln 1 − 1) − (𝛾 ln 𝑥 − 𝑥 + ln 𝑦 − 𝑦) 
 

⟹  𝑉(𝑥, 𝑦) = 𝛾(ln 𝛾 − ln 𝑥) − ln 𝑦 + (𝑥 − 𝛾) + 𝑦 − 1. 
 

So this is your Lyapunov function. 

 

Now, if you put  

𝑉(𝛾, 1) = 𝛾(ln 𝛾 − ln 𝛾) − ln 𝑦 + (𝛾 − 𝛾) + 1 − 1 = 0 
 

So at the equilibrium point, the function vanishes. 

 

Now let us calculate 𝑉̇. Before that, let me quickly do it here itself. 

 

So, if you want to calculate this  

𝑉̇ =  
𝜕𝑉

𝜕𝑥
𝑥̇ +

𝜕𝑉

𝜕𝑦
𝑦̇. 

 

So, if I substitute it, I will get 

 

 𝑉̇ = −[(
𝛾

𝑥
− 1) (𝑥 − 𝑥𝑦) + (

1

𝑦
− 1)(−𝛾𝑦 + 𝑥𝑦)] 

 

So, if you simplify this you will get 

 

 𝑉̇ = −[𝛾 − 𝛾𝑦 − 𝑥 + 𝑥𝑦 − 𝛾 + 𝑥 + 𝛾𝑦 − 𝑥𝑦] = 0 
 

which means that your (𝛾, 1) is Lyapunov stable or stable, which coincides with the Lyapunov 

indirect method. 



 

So, whether you use the indirect method or whether you use the direct method in both the cases 

you get the same answer. 

 

The important question here is that you have a system which is non-linear  
𝑑𝑥

𝑑𝑡
= 𝑎𝑥 + 𝑏𝑦 + 𝑃(𝑥, 𝑦)                             

 
𝑑𝑦

𝑑𝑡
= 𝑐𝑥 + 𝑑𝑦 + 𝑄(𝑥, 𝑦)               … . (1) 

 

 

However, you are linearizing the system, you are doing some analysis and you are concluding on 

the linearized system. 

 

You say this linear system is a node or this linear system is a stable spiral and then you conclude 

that on the non-linear system. 

 

So, the question is that how sure you are that that is going to work, because all your analysis on 

the linear system, we say it is a linear stability analysis, whereas our equation may be linear may 

be non-linear, but we keep the result as the same, if it is linear no problem, but if it if it is non-

linear we linearize it first then do our analysis and then conclude on the linear system and then 

we say that our non-linear system also follows the same kind of dynamics. 

 

Now, the question is why that happens? 

 

So, here what you see that I have written the differential equation of the form that, say, this is the 

linear part 𝑎𝑥 + 𝑏𝑦 , 𝑐𝑥 + 𝑑𝑦 and this is the non-linear part (𝑃(𝑥, 𝑦), 𝑄(𝑥, 𝑦)). 

 

Now, the hypothesis is that this  

 

(𝑖) |
𝑎 𝑏
𝑐 𝑑

| ≠ 0,    

 

(𝑖𝑖)  𝑃1 and 𝑄1, they have continuous first partial derivatives, for all x such that 

 

lim
(𝑥,𝑦)→(0,0)

𝑃1(𝑥, 𝑦)

√𝑥2 + 𝑦2
= 0    and lim

(𝑥,𝑦)→(0,0)

𝑄1(𝑥, 𝑦)

√𝑥2 + 𝑦2
= 0. 

 

So, if this condition is satisfied then we have the following conclusions: 

 

So, here I write the linear system  

 
𝑑𝑥

𝑑𝑡
= 𝑎𝑥 + 𝑏𝑦                           

 
𝑑𝑦

𝑑𝑡
= 𝑐𝑥 + 𝑑𝑦.            … (2) 

 

 



Let  𝜆1, 𝑎𝑛𝑑 𝜆2 be the eigenvalues of the system (2). Then, the conclusion is 

 

(i) If  𝜆1, and 𝜆2  are real,unequal and of same sign, then (0,0) is node for (2)  and  also for (1). 

    

So, that is why it happens that you have linearized it, but you did not check this property which 

is automatically fulfilled and then you conclude that (0,0) is a node for my linear system and 

therefore, it is also a node for my non-linear system. 

 

The same thing is true if 

 

(ii) 𝜆1,and 𝜆2 are real, unequal and opposite signs. 

 

So, in that case you get a saddle for (2) and hence a saddle for (1). 

 

(iii) If 𝜆1, and 𝜆2 they are complex conjugate with nonzero real part, so complex conjugate real 

part not equal to zero, then you get spiral or focus. 

 

So if the system (2) shows that it is a spiral or a focus, then system (1) will also will have a spiral 

or a focus at the equilibrium point (0, 0). 

 

(iv) If 𝜆1, and 𝜆2  real and equal  with 𝑎, 𝑑 ≠ 0, 𝑏 = 𝑐 = 0,  so, if this happens this one is a with 

conditional that you have to remember this, then if your system (2) is a node, your system (1) 

will also be a node. 

 

(v) If 𝜆1, and 𝜆2 is purely imaginary, then (0,0) is center for (2), then for (1), it can be a center or     

a spiral. 

 

So, this is one deviation that you get, that if it is purely imaginary root we know that this is a 

centre but for (1), it can be a centre or it can be a spiral and similarly if 

 

(vi) if your roots are real and equal, with the condition, 𝑎 = 𝑑 ≠ 0, 𝑏 = 𝑐 = 0, then (0,0) is node 

for (2) but for (1), it can be a node or spiral. 

 

So, basically I need you to remember this theorem, that yes we have a theorem which tells you 

that though we are doing our stability analysis on the linear system but the result is also true for 

the non-linear system because of this following properties and hence what we can say on the 

linear system is also holds true for the nonlinear system. 

 

Quickly we just take an example such that it is clear. 

 
𝑑𝑥

𝑑𝑡
= 𝑥 + 2𝑦 + 𝑥2 

 
𝑑𝑥

𝑑𝑡
= −3𝑥 − 4𝑦 + 2𝑦2 

 

So, now verify step by step all properties: 

 

(i)  |
𝑎 𝑏
𝑐 𝑑

| = |
1 2

−3 −4
| = −4 + 6 = 2 ≠ 0. So, the first property is satisfied. 



 

(ii) lim
(𝑥,𝑦)→(0,0)

𝑃1(𝑥,𝑦)

√𝑥2+𝑦2
= lim

(𝑥,𝑦)→(0,0)

𝑥2

√𝑥2+𝑦2
= 0 

 

We put  𝑥 = 𝑟 cos 𝜃, 𝑦 = cos 𝜃, such that 𝑥2 + 𝑦2 = 𝑟2, such that 𝑎𝑠 𝑥 → 0, 𝑦 → 0, then 𝑟 → 0. 
 

 

⟹  lim
(𝑥,𝑦)→(0,0)

𝑃1(𝑥, 𝑦)

√𝑥2 + 𝑦2
 = lim

𝑟→0
r2

cos2 𝜃

√𝑟2 cos2 𝜃 + 𝑟2 sin2 𝜃 
 

 

 

= lim
𝑟→0

𝑟2
cos2 𝜃

𝑟
= lim

𝑟→0
𝑟𝑐𝑜𝑠2𝜃  ≤  lim

𝑟→0
𝑟 = 0.  

 

In the similar manner you can prove that second part 

 

lim
(𝑥,𝑦)→(0,0)

𝑄1(𝑥, 𝑦)

√𝑥2 + 𝑦2
= 0. 

 

So, all properties have been satisfied and if you take the linearized system, that is,  

 
𝑑𝑥

𝑑𝑡
= 𝑥 + 2𝑦,     

 
𝑑𝑦

𝑑𝑡
= −3𝑥 − 4𝑦, 

 

I find the eigenvalue at the point (0, 0),  

 

|
1 − 𝜆 2

−3 −4 − 𝜆
| = 0 ⟹ 𝜆 =

5 ± 𝑖 √15

2
. 

 

So, this is imaginary values with positive real part and hence it is a spiral and an unstable one, 

because this real value is positive. 

 

So, this linear system gives you an unstable spiral and we conclude that the non-linear system 

will also give you an unstable spiral. 

 

So, that is how your theorem has been explained with the help of an example. 

 

So, in my next lecture, we will be talking about some growth models. 

 

Till then bye-bye. 

 

 


