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Hello, Welcome to the course EXCELing with Mathematical Modelling. 

 

Today is my third lecture on this stability of the dynamical system and today we will be discussing 

about Lyapunov stability. 

 

Before that, let me recall this quadratic forms, what is quadratic form, what is the positive semi-

definite, what is positive definite, negative definite and so on. 

 

We will be using this in the definition of Lyapunov stability. 

 

So, start with an expression of the form 

∑ 𝑎𝑖𝑗𝑥𝑖𝑥𝑗  ,

𝑛

𝑖,𝑗=1

 

 

 

where 𝑎𝑖𝑗 is are real numbers. So,  an expression of this form, is called a real quadratic form. 

 

For example, if I write 𝑎𝑥2 + 2ℎ𝑥𝑦 + 𝑏𝑦2, where your a, h and b are real numbers, then this is a 

quadratic form in two variables. Variables are x and y.  

 

Similarly,   𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2 + 2𝑓𝑦𝑧 + 2𝑔𝑧𝑥 + 2ℎ𝑥𝑦, this is a quadratic form in three variables. 

 

I can put numeric of this a, b, and c, so, I can write say 4𝑥2 + 5𝑥𝑦 + 9𝑦2. This is a quadratic 

form of two variables. 

 

If I denote this by 

∅ = ∑ ∑ 𝑎𝑖𝑗𝑥𝑖𝑦𝑗

𝑛

𝑗=1

𝑛

𝑖,=1

, 

 

then there exists a matrix, a unique symmetric matrix, such that  

 

∅ = 𝑋𝑇𝐵𝑋, 
 

where B is this unique and symmetric matrix and we say B to be the matrix of the quadratic form. 

 

So how this (𝑋𝑇𝐵𝑋) is equal to this (∑ ∑ 𝑎𝑖𝑗𝑥𝑖𝑦𝑗)𝑛
𝑗=1

𝑛
𝑖,=1  ? 

 

Well, we can easily see it with the help of this example. 

 



Say, suppose I take this quadratic form 4𝑥2 + 5𝑥𝑦 + 9𝑦2 and  

 

I write  𝐵 = (
𝑎 ℎ
ℎ 𝑏

) = (
4 5/2

5/2 9
). 

 

If I compare it with 𝑎𝑥2 + 2ℎ𝑥𝑦 + 𝑏𝑦2   and 4𝑥2 + 5𝑥𝑦 + 9𝑦2, I will get a = 4,  

b = 9 and h = 5/2,    𝐵 = (
𝑎 ℎ
ℎ 𝑏

) = (
4 5/2

5/2 9
), where my X is (𝑥

𝑦
). 

 

Generally, it is always customary to write the vector as a column, so this is  𝑋 = (𝑥
𝑦

) and  𝑋𝑇 =

(𝑥  𝑦). So, if I now find what is my  𝑋𝑇𝐵𝑋  here,  so this will be  

 

(𝑥 𝑦)12 (
4 5/2

5/2 9
)

22

(
𝑥

𝑦
)

21

 

 

=  (𝑥 𝑦)12 (
4x + 5y/2

5x/2 + 9y
)

21

 

 

=  x (4x +
5y

2
) + y (

5x

2
+ 9y), 

 

and if we simplify this, it is 4𝑥2 + 5𝑥𝑦 + 9𝑦2 and we get this particular quadratic form. 

 

So, ∅ = ∑ ∑ 𝑎𝑖𝑗𝑥𝑖𝑦𝑗
𝑛
𝑗=1

𝑛
𝑖,=1  and ∅ = 𝑋𝑇𝐵𝑋,   they are the same. 

 

Now, let us move on to the definition of positive definite. 

 

We now write ∅ = 𝑋𝑇𝐵𝑋   which is equal to ∑ ∑ 𝑎𝑖𝑗𝑥𝑖𝑦𝑗
𝑛
𝑗=1

𝑛
𝑖,=1    Now, this quadratic form is 

 

(i) positive definite,   if Ø > 0, for all 𝑋 ≠ 𝟎 (null matrix),  
                                         =  0, for 𝑋 = 𝟎 

 

(ii) positive semi definite, if Ø ≥ 0, for all 𝑋 ≠ 𝟎,  
                                                  =  0, for 𝑋 = 𝟎 

 

(iii) negative definite, if Ø < 0, for all 𝑋 ≠ 𝟎,    
                                           =  0, for 𝑋 = 𝟎 

 

 (iv) negative semi-definite, if Ø ≤ 0, for all 𝑋 ≠ 𝟎,          
                                                     =  0, for 𝑋 = 𝟎 

 

and finally, this quadratic form is called 

 

(v)  indefinite, if Ø < 0, for some 𝑥 ≠ 𝟎,  and  Ø > 0   for some 𝑋 ≠ 𝟎. 

         

With this definition, we now move on. 

 

 



If we take an example, 5𝑥2 + 𝑦2 + 5𝑧2 + 4𝑥𝑦 − 8𝑥𝑧 − 4𝑦𝑧, and we have to check under what 

category it falls. 

 

So the trick is that you try to make this a whole square. 

 

So if I want to make this a whole square, so instead of taking say root 5 whole square, I will 

prefer, I will write it as  

 

4𝑥2 + 𝑦2 + 4𝑧2 + 𝑥2 + 𝑧2 + 4𝑥𝑦 − 8𝑥𝑧 − 4𝑦𝑧  
 

                            =  (2𝑥)2 + 𝑦2 + (2𝑧)2 + 2 (2𝑥) (𝑦) − 2 (2𝑥) (2𝑧) − 2 (𝑦) (2𝑧) + 𝑥2 + 𝑧2 

 

                                =  (2𝑥 + 𝑦 − 2𝑧)2+𝑥2 + 𝑧2. 

 

So, you can see that this is always positive for all nonzero x, y and z and this is only equal to 

zero, when x =0, y = 0, z = 0, which satisfies this definition of positive definite and hence this 

quadratic form is positive definite. 

 

So, that is how you just prove. 

 

Now, let us move to this Lyapunov’s stability. 

 

So, this is another way of checking the stability of the system without explicitly integrating the 

differential equation. 

 

So, the man who gave this idea is Alexander Mikhailovich Lyapunov and his concept is that if 

you have a differential equation  

 
𝑑𝑥̃

𝑑𝑡
=  𝑓(𝑥̃), 𝑥(𝑡0) = 𝑥̃0    𝑤ℎ𝑒𝑟𝑒 𝑓: 𝑅 →   𝑅 

 
with an initial condition, then he use an idea that if the potential energy has a relative minimum 

at the equilibrium point, then the equilibrium point is stable. 

 

So, basically if you have a minimum potential energy, then your equilibrium point is stable, 

otherwise it is unstable. 

 

So, let us check that what is its relation between the stability and this potential energy. I mean, 

how do you relate? How when potential energy decreases, you get more stability? 

 

So, this can be explained by this example, which I saw in YouTube and it goes like this. 

 

You consider two electrons, say these two electrons, and I put them in a vacuum. This is my setup 

1. 

 

Then after some time, I move it here and since they are both negative, obviously they will move 

apart. So, this is my second setup. 

 

Call this setup 2. 

 



Now I say that setup 2 is more stable than setup 1. 

 

Now how it is that? 

 

So I say fig 1 is stable and fig 2 is unstable. 

 

So it is like this, that this arrangement 2, it is more preferable by nature than arrangement 1. 

 

And why is that? 

 

Say, you start from an initial condition, say, from here and if you drop a particle so obviously it 

will come here oscillate a bit and ultimately it will settle here. 

 

So the nature wants that if you drop anything, a particle from here so it will settle down here. 

 

So in the similar manner that if you keep these two particles as an initial condition and then after 

some time I move it here and I saw that they moved apart, which is obvious because you have 

two negative electrons and they will move apart. 

 

So, hence for nature, this is more convenient than this one. 

 

And hence, we say that this system 2 is more stable than system 1. 

 

So, unless we have these two of them, I cannot compare. 

 

So, if only this is there or this is there, then it does not make any sense. 

 

So, I have to have a second option or second diagram, through which I can compare that which 

one is more stable than the other. 

 

So, in this particular case, your setup 2 is more more stable than setup 1. 

 

So, I say this one is stable and this one is unstable. 

 

Say if I take another, one is positive, another is negative, put them in vacuum, so, this is again 

the setup 1 and after some time, I will see because one is positive, another is negative, 

 

They will attract each other, so again, I say that this is more stable than this one. 

 

So I categorize this as stable and this as unstable. 

 

Now, I have moved this from here to here. So there is some change in energy. 

 

So the question is that what happens to this total energy? And as we know that energy is neither 

created nor destroyed. It was changes to one form to another form. And because it is inside the 

vacuum, this holds true. 

 

So moving this from here to here, there is a change in energy and we know that is the kinetic 

energy. 

 



So I say that let us here the kinetic energy is zero, and here, say, the kinetic energy is 10. 

 

Now the question is where the initial energy comes from and that is where the potential energy 

comes. So here inside there is some potential energy. 

 

So this configuration already has an inbuilt potential energy say U = 50, and I moved it from here 

to here, which generates this kinetic energy of unit 10. 

 

And since the total energy remains constant, in this particular case, your U will be 40. 

 

So what do you notice? That from here to here, your potential energy decreases and your stability 

is increasing. So from unstable or rather this setup is more stable than this one. 

 

So as your potential energy decreases, your stability increases. 

 

                      
The same thing is here. 

 

From here to here, I have moved this frame. So there is a kinetic energy. Say that kinetic energy 

is 15. 

 

From moving to here to here, initially it was zero. Here it was 15. 

 

U, I take that to be again 50. So, here U will be 35. 

 

So, again there is a change in the potential energy which decreases from its initial point, from its 

initial configuration and you move from unstable to stable or rather this configuration is more 

stable than this one. 

 

So, with this example, it is clear that as your potential energy decreases, you attain more stability. 

 



So, this Russian mathematician Alexander Mikhailovich Lyapunov, he generalized this principle 

and he figured out a method for studying the stability of this autonomous system. 

 

So, what is the condition for this Lyapunov stability? So, he says that he defines an autonomous 

system. So, this is the autonomous system with the initial condition 

  

𝑑𝑥̃/𝑑𝑡 = 𝑓(𝑥̃), 𝑥(𝑡0 ) =  𝑥0  𝑤ℎ𝑒𝑟𝑒 𝑓: 𝑅 → 𝑅, 
 

having isolated critical point at the origin 𝑥̃ =  0  and 𝑓(𝑥̃) has continuous partial derivatives for 

all 𝑥.̃ 
 

Here origin has been taken the critical point if any other if there is an 𝑥̃ star as the critical point 

the same thing holds true or you can shift the origin to 𝑥̌ star. 

 

So, this system has a critical point 𝑥̃ = 0, and this function has a continuous partial derivative for 

all 𝑥̃. Then he defined a function 𝑉(𝑥̃) which he called as the Lyapunov function and this function 

must be positive definite in the neighborhood of the origin. 

 

And the derivative of this function, which is 𝑉̇(𝑥̃) of 𝑉(𝑥̃) with respect to the system is negative 

semi definite in the neighborhood of 𝑥̃ = 0. 

 

So, if you get such a function, then this 𝑉(𝑥̃)  is called the Lyapunov function of the system. 

 

If you want to look at mathematically, so this 𝑉(𝑥̃) is called a Lyapunov function if 

 

  (i) 𝑉(𝑥̃) > 0 in the neighborhood of the origin 𝑥̃ = 0, 
 

  (ii)  𝑉(𝑥̃) = 0  for all 𝑥̃ = 0, 

 

 (iii) 𝑉̇(𝑥̃) ≤ 0 in the neighborhood of the origin 𝑥̃ = 0, 

         

  (iv) 𝑉̇(𝑥̃) = 0 for all 𝑥̃ = 0. 
 

So, if all these four conditions satisfies for a function 𝑉(𝑥̃), we call this a Liopunov function. 

 

So, if there exists a Lyapunov function 𝑉(𝑥̃)  if you can find such a function, which is not unique 

again, and there is no hard and fast rule that how you will find that function but if you can find 

that function in the neighborhood of the equilibrium point in this case it is origin x = 0 then the 

steady state x = 0  solution is called Lyapunov stable. 

 

However, if 𝑉̇(𝑥̃) < 0 in the nbd. of the origin 𝑥̃ = 0, then the steady- state solution 𝑥̃ = 0, it is 

called asymptotically stable. 

 

So, we have to just check that whether a 𝑉(𝑥̃)   exists, then this function has to be positive 

definite, 𝑉(0) has to be 0 and the derivative has to be negative semi-definite. 

 

If it is semi-definite, if it is Lyapunov stable, if it is negative definite it is asymptotically stable. 

 

So, this is the result for this Lyapunov stability. 



Let us check with examples, before that this is Lyapunov condition for global stability. 

 

So, whatever we have studied previously, those are local stability by local stability I mean that if 

you have this as your equilibrium point, and you start somewhere in the neighborhood of this 

point, then this is going to reach the equilibrium point is the system is stable. 

 

But this global stability you consider the entire domain and no matter from where you start in the 

whole domain, this is going to reach this particular equilibrium point if the system is globally 

stable about that equilibrium point. 

 

So, this is the basic difference between this local stability and the global stability. 

 

So, local stability is in the neighborhood and the global stability is in the entire domain. 

 

So, for 𝑥̃ = 0  to be  globally asymptotically stable, first it has to be locally asymptotically stable, 

that is a Lyapunov function must exist, that function has to be positive definite and the derivative 

has to be negative definite not semi-definite because it is locally asymptotically stable. 

 

And once you prove that it is locally asymptotically stable you see that whether this mod of the 

Lyapunov function it goes to infinity as the norm goes to infinity which is known as radially 

unbounded. 

,                             |𝑉(𝑥̃)| → ∞ as norm (𝑥̃) = ‖𝑥̃‖ → ∞. 
 

If along with locally asymptotically stable, the function is also radially unbounded, then we say 

that 𝑥̃ = 0 is globally asymptotically stable, in short, GAS. 

 

 

 
 



Now, let us take examples. So, the first example that we take 

 
𝑑𝑥

𝑑𝑡
= −𝑥 − 𝑦,

𝑑𝑦

𝑑𝑡
= 𝑥 − 𝑦3 

 

So, if you want to find the fixed points, so from here, so you put 

 

                                                         −𝑥 − 𝑦 = 0,  𝑥 − 𝑦3 = 0 
 

and one of the fixed point is (0,0), which you can see from here because it can satisfy the 

equation. So, you find the matrix A 

 

𝐴 = (
−1 −1
1 −3𝑦2)

(0,0)

= (
−1 −1
1 0

) 

 

If you want to calculate the eigenvalue  

 

|
−1 − 𝜆 −1

1 −𝜆
| = 0 ⟹  𝜆 =

−1

2
± 𝑖

√3

2
 . 

 

Well, this is what we have done before and this is also called Lyapunov's first method. 

 

What we learned about this Lyapunov function is called Lyapunov's second method or direct 

method. 

 

So, here we define the function 𝑉(𝑥, 𝑦) = 𝑎𝑥2+𝑏𝑦2   (𝑎, 𝑏 > 0). 
 

Well, obvious question is how I choose this function. As I told you, there is no hard and first rule, 

after doing looking into examples, few examples, you will understand. 

 

First of all, this function is positive definite because you can see that other than x = 0 and y = 0, 

this function is always positive. So, it is positive definite. 

 

                                  𝑉(𝑥, 𝑦) > 0 ∀ (𝑥, 𝑦) ≠ (0,0) and also, 𝑉(0,0) = 0.                               
 

So, very important that you check these two properties. 

 

Next comes  

𝑉̇(𝑥, 𝑦) =
𝑑𝑉

𝑑𝑡
=

𝜕𝑉

𝜕𝑥
𝑥̇ +

𝜕𝑉

𝜕𝑦
𝑦̇

̇
= 2𝑎𝑥(−𝑥 − 𝑦) + 2𝑏𝑦(𝑥 − 𝑦3) 

 

Now you simplify. So, if you simplify it is  

 

                                           𝑉̇(𝑥, 𝑦) = −2𝑎𝑥2 − 2𝑏𝑦4 + 2𝑥𝑦(𝑏 − 𝑎) 
 

So, I will choose the a and b in such a manner, such that this is less than zero, either less than 

zero or less or equal to zero. If it is less or equal to zero, then this will be negative semi-definite. 

If it is only less than zero, then it will be negative definite. 

 



So it is clear that if I choose b = a, and whatever may be the value, if I choose b = a, equal to 

either 1, 2, 1/2, whatever the value you choose, this going to vanish and you are left with  

 

                                             𝑉̇(𝑥, 𝑦) = −2𝑎𝑥2 − 2𝑏𝑦4,  
 

Which is always less than zero for a = b = 1 (say), 

 

𝑉̇(𝑥, 𝑦) = −2𝑥2 − 2𝑦4, 
 

and which is always less than zero for non-zero x and y. So, this becomes negative definite. 

 

So, your 𝑉 is positive definite, your 𝑉(0,0) = 0 and your 𝑉̇(𝑥̃) < 0, which means that the system 

is asymptotically stable. 

 

So, this is locally stable about the origin or rather asymptotically stable about the origin. 

 

Now let us see whether your 𝑉(𝑥, 𝑦) is radially bounded or not. 

 

So, I have to find the norm of (𝑥, 𝑦) = √𝑥2 + 𝑦2 → ∞ as (𝑥, 𝑦) → ∞, so 

 

                             ‖𝑋‖ = √𝑥2 + 𝑦2 → ∞ and 𝑉(𝑥, 𝑦) = 𝑥2 + 𝑦2 → ∞. 

 

Hence 𝑉(𝑥, 𝑦)is radially unbounded. 

 

So, your condition for global stability is fulfilled and you say the system is globally 

asymptotically stable. 

 

So, to sum up what you have to do is you first find the equilibrium point, then you have to write 

the Lyapunov function, I mean you have to write the function 𝑉(𝑥, 𝑦) and show that it is a 

Lyapunov function. 

 

This is totally will come from practice, there is no hard and first rule. 

 

by doing few problems you will understand what kind of function you have to take and you have 

to show that this function is a Lyapunov function that means it has to be positive definite, it has 

to be zero at the equilibrium point, in this case it is origin, and the derivative V has to be negative 

definite or negative semi-definite in this case it is negative definite if you choose b = a, equal to 

any value, in this case I have chosen 1, and once it is done, you prove that you show that the 

system is asymptotically stable. 

 

Then you have to show that it is radially unbounded for that you take the norm and as (𝑥, 𝑦) tends 

to infinity this norm also goes to infinity and this 𝑉(𝑥, 𝑦) also goes to infinity. 

 

So, by the condition of globally asymptotically stable, the Lyapunov's condition, so as  your 

𝑉(𝑥, 𝑦) tends to infinity as your norm goes to infinity and that condition is fulfilled and you say 

the system is globally asymptotically stable. 

 

 

 



We take another example say 

 
𝑑𝑥

𝑑𝑡
= −𝑥 + 𝑦2,

𝑑𝑦

𝑑𝑡
=  −2𝑦 + 3𝑥2 

 

 

So, as usual we define our  𝑉(𝑥, 𝑦) = 𝑎𝑥2 + 𝑏𝑦2, clearly, 

                    

𝑉(𝑥, 𝑦) > 0 ∀ (𝑥, 𝑦) ≠ (0,0) 
 

𝑉(0,0) = 0.                               
 

Clearly, here also, x = 0, y = 0 is your steady state solution or equilibrium solution because this 

satisfies this equation. 

 

So, I now find what is my 𝑉̇. So, your 

 

𝑉̇(𝑥, 𝑦) =
𝑑𝑉

𝑑𝑡
=

𝜕𝑉

𝜕𝑥
𝑥̇ +

𝜕𝑉

𝜕𝑦
𝑦̇

̇
 

 

                                             = 2𝑎𝑥(−𝑥 + 𝑦2) + 2𝑏𝑦(−2𝑦 + 3𝑥2) 
 

                                        = −2𝑥2(𝑎 − 3𝑏𝑦) − 2𝑦2(2𝑏 − 𝑎𝑥) 

 

So the reason I choose minus because I have to show this is less or equal to zero. 

 

Now if I want this to be less or equal to zero, so clearly I must have  

 

𝑎 − 3𝑏𝑦 > 0,    2𝑏 − 𝑎𝑥 > 0 
 

So if these two are positive quantities clearly then this will be less than zero. 

 

So, the condition becomes  

 

𝑎 > 3𝑏𝑦 
 

𝑦 <
𝑎

3𝑏
 

 

Similarly,  

 

2𝑏 − 𝑎𝑥 > 0 
 

2𝑏 > 𝑎𝑥 
 

𝑥 <
2𝑏

𝑎
 

 

So, if I choose again my a= b = 1, then I get    𝑥 < 2, 𝑦 <
1

3
 . 



So, if this condition holds, then your 𝑉̇(𝑥, 𝑦) < 0, hence the system is locally asymptotically 

stable. 

 

But, if I choose my a, to be say, 𝑎 =
1

2
, and 𝑏 =

1

4
 ,  I get 𝑥 < 1 and 𝑦 <

2

3
 . 

 
So, the condition changes, but you still attend the asymptotic stability. 

 

So, this is how your Lyapunov function is being used to calculate the stability of the system. 

 

In the next lecture, we will be talking about the phase portrait and the phase plane analysis. 

 

Till then, bye-bye. 

 

 

 


