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Hello, welcome to the course EXCELing with Mathematical Modeling. 

 

Continuing with our previous lecture on stability analysis, I will now extend it to a system of 

differential equations, mainly, two differential equations. 

 

So, let us consider the differential equation of the form  

 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑦), and       

𝑑𝑦

𝑑𝑡
= 𝑔(𝑥, 𝑦) 

  
So, if (𝑥∗, 𝑦∗) is the steady state solution, so obviously, it is going to satisfy this equation and 

this equation. So, to find the steady state solution we have to put 

 
𝑑𝑥

𝑑𝑡
= 0, and       

𝑑𝑦

𝑑𝑡
= 0, 

  
which will imply 𝑓(𝑥, 𝑦) = 0 and 𝑔(𝑥, 𝑦) = 0. 

 

And, if we say that (𝑥∗, 𝑦∗)  is our steady state solution, then obviously this is going to satisfy 

this equation, and hence if you substitute those two values, then obviously 

 

𝑔(𝑥∗, 𝑦∗) = 0 and 𝑓(𝑥∗, 𝑦∗) = 0. 
 

We will now be finding the condition that when this system of differential equation is stable. 

 

So, as defined before, now it is two variables one is x, another is y,  we give a small perturbation 

𝑥 =  𝑋 + 𝑥∗, 𝑦 =  𝑌 + 𝑦∗  about the equilibrium point (𝑥∗, 𝑦∗).  So, if you do that, you will be 

getting  

 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑋 + 𝑥∗, 𝑌 + 𝑦∗) 

and  
𝑑𝑦

𝑑𝑡
= 𝑔( 𝑋 + 𝑥∗, 𝑌 + 𝑦∗) 

 

Now, we will be using the Taylor series expansion and if you recall the Taylor series expansion 

is  

𝑓(𝑥, 𝑦) = 𝑓(𝑎, 𝑏) + (𝑥 − 𝑎)𝑓𝑥(𝑎, 𝑏) + (𝑦 − 𝑏)𝑓𝑦(𝑎, 𝑏) + higher order terms, 

 

and since we are interested on linear stability analysis, we have only taken the linear terms. 

 



So, this was in the form, let me rewrite them  

 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑦)      and      

𝑑𝑦

𝑑𝑡
= 𝑔(𝑥, 𝑦) 

  
So, I will be using this formula or Taylor series expansion on this. So, if I take the first 

equation, this will give me  

 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥∗, 𝑦∗ ) + (𝑥 − 𝑥∗)𝑓𝑥(𝑥

∗, 𝑦∗) + (𝑦 − 𝑦∗)𝑓𝑦(𝑥
∗, 𝑦∗) + higher order terms.     

 

In the similar manner, 

 
𝑑𝑦 

𝑑𝑡
= 𝑔(𝑥∗𝑦∗) + (𝑥 − 𝑥∗)𝑔𝑥(𝑥

∗, 𝑦∗) + (𝑦 − 𝑦∗)𝑔𝑦(𝑥
∗, 𝑦∗) + higher order terms. 

 

So, we neglect the higher order terms and we put the differential equation. So, from here, you can 

see that if I differentiate 𝑥 =  𝑋 + 𝑥∗, 
 

𝑑𝑥 

𝑑𝑡
=
𝑑𝑋

𝑑𝑡 
 , 

  

 as your 𝑥∗ is a constant, and also I can replace  𝑥 − 𝑥∗ = 𝑋. So, we will be using this two, and 

if I substitute here, my  

 
𝑑𝑋

𝑑𝑡
= 𝑋 𝑓𝑥(𝑥

∗, 𝑦∗) + 𝑌𝑓𝑦(𝑥
∗, 𝑦∗), 

 

because (𝑥∗ , 𝑦∗) is an equilibrium point, this will be equal to zero, this will be equal to zero, as 

stated earlier. Similarly, 
𝑑𝑌

𝑑𝑡
= 𝑋 𝑔𝑥(𝑥

∗, 𝑦∗) + 𝑌𝑔𝑦(𝑥
∗, 𝑦∗) 

 

Now, this can be put in the matrix form also. So, if I write it in the matrix form, then 

 
𝑑𝑥̅  

𝑑𝑡
= 𝐴𝑥̅ , 

  

where my 𝑥̅ = (
𝑥
𝑦) and  𝐴 = (

𝑓𝑥 𝑓𝑦
𝑔𝑥 𝑔𝑦

) at the point (𝑥∗, 𝑦∗). 

 

Now let  𝑥̅ = 𝑣𝑒𝜆𝑡  (𝑣 ≠ 0) be a trial solution.  So, I am going to substitute it here. So, 

  
𝑑𝑥̅  

𝑑𝑡
= 𝐴𝑣𝑒𝜆𝑡 

  

So, if I substitute it here, what I get is  

 

𝑣𝜆𝑒𝜆𝑡 = 𝐴𝑣𝑒𝜆𝑡  ⟹ (𝐴𝑣 − 𝜆𝑣)𝑒𝜆𝑡 = 0,      𝑒𝜆𝑡 ≠ 0 
 



Hence, I get 

𝐴𝑣 = 𝜆𝑣. 
 

If you recall this is just the definition of the eigenvalue. So, basically this 𝜆 here is the eigenvalue 

of this matrix A. Now to find this eigenvalue what we do we take this to the left hand side and 

you take the determinant of that which will give us 

 

|
𝑓𝑥 − 𝜆 𝑓𝑦
𝑔𝑥 𝑔𝑦 − 𝜆

| = 0 

 

If you simplify this, then you get it is as 

 

𝜆2 − (𝑓𝑥 + 𝑔𝑦)𝜆 + 𝑓𝑥𝑔𝑦 − 𝑔𝑥𝑓𝑦 = 0. 
 

Now if you see this one it is just the addition of off diagonal which is known as the trace of the 

matrix A and this is just the product or value of Determinant A, 

 

𝜆2 − Trace(𝐴)  𝜆 + Det (𝐴) = 0 
 

So this is basically 𝐷𝑒𝑡(𝐴). Now for the system to be stable both the eigenvalues needs to be 

negative. And if both the eigenvalues need to be negative so then sum of the eigenvalues, that is, 

Trace(𝐴) must be negative, because if 𝜆1 and 𝜆2 are the eigenvalues, this generally gives the sum 

of the roots and this gives the product of the roots. 

 

So the sum of the roots in both 𝜆1 and 𝜆2 are negative, must be less than 0 which implies that the 

Trace(𝐴) < 0 and if 𝜆1 and 𝜆2 are negative, their product must be positive, which implies that 

the Det(𝐴) > 0.  
 

So the condition that the system of two equations will be stable is that the 

 

Trace(𝐴) < 0 and Det(𝐴) > 0. 
. 

You can remember them as a formula also or you can straight away derive, because anyway you 

have to find this matrix A and find the eigenvalues. If you can straight away find the eigenvalues 

just see whether both of them are negative or not. 

 

If both of them are negative, then your system is stable. If it is not, that means if one of them is 

negative, one of them is positive, or both are positive, in either cases, the system is unstable. 

 

Now this criterion or this condition is known as Routh-Hurwitz's criteria. 

 

So, for two equations, if your characteristic equation is of the form 

 

𝜆2 + 𝑎1𝜆 + 𝑎2 = 0, 
 

then the condition that the system is stable, is 𝑎1 > 0 and 𝑎2 > 0. 

 

Please note that this equation, and this equation, there is a tiny difference is of this negative sign. 



So, if I bring this negative sign inside, then I put a positive sign here, this negative sign is absorbed 

in this 𝑎1, and hence here 𝑎1 > 0 and 𝑎2 > 0. 
 

So, either you write this equation as a negative one, or you write it in the positive one then this is 

easy to remember. 

 

If the equation is, suppose three, then you get a cubic characteristic equation, then it is 

 

𝜆3 + 𝑎1𝜆
2 + 𝑎2𝜆 + 𝑎3 = 0. 

 

 

In this case, the Routh-Hurwitz criteria that the system will be stable is  

 

𝑎1 > 0, 𝑎2 > 0,        𝑎3 > 0, 
and with that  

𝑎1𝑎2 − 𝑎3 > 0. 
 

So, if all these four conditions are satisfied we say the system is stable. 

 

So, let us move on to some examples. So, you have to find the stability of the system  

 
𝑑𝑥 

𝑑𝑡
= −𝑥 + 𝑦 

and  
𝑑𝑦 

𝑑𝑡
= 𝑥 𝑦 − 1 

  

So, the first thing is, you have to find the points of equilibrium and to do that you put  

 
𝑑𝑥 

𝑑𝑡
= 0      and      

𝑑𝑦 

𝑑𝑡
= 0. 

 

This gives you  

−𝑥 + 𝑦 = 0 ⟹ 𝑥 = 𝑦 
 and this gives you 

                                            𝑥𝑦 − 1 = 0 ⟹ 𝑥. 𝑥 − 1 = 0  ⟹ 𝑥2 = 1 ⟹ 𝑥 = ±1 
So we have  

𝑥 = ±1. 
 

So, when 𝑥 = 1, 𝑥 𝑦 − 1 = 0 gives  

𝑦 = 1 
 and when  

                                                             𝑥 = −1, 𝑦 = −1 

 

 

So we get that  

(−1,−1)  and (1,1) 
 

to be the steady state solutions. 

 



So, once you get the steady state solution, now you calculate that matrix A. So, the matrix A is 

you take  

𝑓(𝑥, 𝑦) =  −𝑥 + 𝑦 
 and take  

𝑔(𝑥, 𝑦) =  𝑥𝑦 + 1 
So, 

 

𝐴 =

(

 
 

𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦
𝜕𝑔

𝜕𝑥

𝜕𝑔

𝜕𝑦)

 
 
= (

−1 1
𝑦 𝑥

) 

at that point 𝑥∗ and 𝑦∗. 
 

So one of the set is  (−1,−1)  another set is (1,1). So now we have to calculate the eigenvalues. 

 

So for (1,1). So, we see for (1,1) you are getting 

 

|𝐴 − 𝜆𝐼| = 0, 
 this will give you  

|
−1 − 𝜆 1
1 1 − 𝜆

| = 0. 

 

So, if I solve this, this is  

(1 + 𝜆)(𝜆 − 1) − 1 = 0. 
So, I get 

𝜆2 − 2 = 0 ⟹  𝜆 = ±√2 . 
 

So, one of the eigenvalue is positive, another eigenvalue is negative implies the system is 

unstable. 

 

At this point, I must notify you, that there are other classifications also, which we will be coming 

in my next lectures. 

 

For the time being, you just need to know whether the eigenvalues are negative or positive. 

 

If both of them are negative, then the system is stable. 

 

If that criterion is not satisfied, that is if one of them is positive, one of them is negative or both 

are positive, then the system is unstable. 

 

Let us check what happens for (−1,−1)  
 

So, in that case  

𝐴 = (
−1 1
−1 −1

). 

Your  

|𝐴 − 𝜆𝐼| = |
−1 − 𝜆 1
−1 −1 − 𝜆

| = 0 

 

So, we have (𝜆 + 1) 2 + 1 = 0  



So, in that case you get (𝜆 + 1) 2 = −1. We write this as 

 

(𝜆 + 1) 2 = 𝑖 2 

and your  

𝜆 = −1 ± 𝑖 . 
 

So, I specifically choose this example to show that what happens when the value of 𝜆 is imaginary. 

 

In that particular case, you have to look at the real part. So, if the real part is negative, then your 

system is stable. If your real part is positive, then your system is unstable. 

 

So, in that particular case, the system is stable at the point (−1,−1). 
 

And as I told you before, we have more classifications on this stability, and which we will be 

learning later. 

 

Let us take another example where we introduce the parameters 𝛼, 𝛽, 𝛾, 𝛿, and k and how do 

you check the stability of this particular example. 

 
𝑑𝑥

𝑑𝑡
= 𝛼𝑥 (1 −

𝑥

𝑘
) − 𝛽𝑥𝑦,

𝑑𝑦

𝑑𝑡
= −𝛾𝑦 + 𝛿𝑥𝑦 

 

So, what we generally do is you put 𝑥 = 𝑋 + 𝑥∗ and 𝑦 = 𝑌 + 𝑦∗, and then you retain only the 

first order terms and you ignore the higher order terms. 

 

So, if I use that, then I will substitute it here, I will get  

 
𝑑(𝑋 + 𝑥∗) 

𝑑𝑡
= 𝛼(𝑋 + 𝑥∗) (1 −

𝑋 + 𝑥∗

𝑘
) − 𝛽(𝑋 + 𝑥∗)(𝑌 + 𝑦∗). 

 

Now, why we are doing this, because I want to show that by using this method and by using the 

formula which we just derived, we both get the same answer. 

 

So you just remember any one of them, the previous one is will take less time, this will take more 

time but this is for the sake of the understanding. 

 

So, here (𝑥∗, 𝑦∗) are the equilibrium points and it is also a constant, so in this particular case it is 

 
𝑑𝑋 

𝑑𝑡
= 𝛼𝑋 + 𝛼𝑥∗ −

𝛼

𝑘
(𝑋2 + 𝑥∗2 + 2𝑥∗𝑋) −  𝛽(𝑋𝑌 + 𝑥∗𝑌 + 𝑦∗𝑋 + 𝑥∗𝑦∗) . 

 

Let us retain only the first order terms and I will ignore or discard the second order terms. So, 

here it is  

 
𝑑𝑋 

𝑑𝑡
= 𝛼𝑋 + 𝛼𝑥∗ −

𝛼

𝑘
𝑥∗2 − 2

𝛼

𝑘
𝑥∗𝑋 − 𝛽𝑥∗𝑌 −  𝛽𝑦∗𝑋 − 𝛽𝑥∗𝑦∗. 

 

So, let us me write the constant term first. So, from this two, if I take 𝛼 𝑥∗ common, 

I get  



𝑑𝑋 

𝑑𝑡
= 𝛼𝑥∗ (1 −

𝑥∗

𝑘
) −𝛽𝑥∗𝑦∗ + (𝛼 − 2

𝛼

𝑘
𝑥∗ −  𝛽𝑦∗ ) 𝑋 − 𝛽𝑥∗𝑌 

 

Now, if you look into this term, this is nothing but this term where you put 𝑥 = 𝑥∗ and 𝑦 = 𝑦∗. 
 

And since (𝑥∗, 𝑦∗) is the equilibrium solution, obviously this is going to be zero and hence this 

term 

𝛼𝑥∗ (1 −
𝑥∗

𝑘
) −𝛽𝑥∗𝑦∗ = 0. 

So you are left with  

 
𝑑𝑋 

𝑑𝑡
= (𝛼 − 2

𝛼

𝑘
𝑥∗ −  𝛽𝑦∗ ) 𝑋 − 𝛽𝑥∗𝑌. 

 

Now, let us simplify the second equation. So for the 
𝑑𝑥 

𝑑𝑡
 you are left with 

 
𝑑𝑋 

𝑑𝑡
= (𝛼 − 2

𝛼

𝑘
𝑥∗ −  𝛽𝑦∗ ) 𝑋 − 𝛽𝑥∗𝑌 

 

If I now take 
𝑑𝑦

𝑑𝑡
= −𝛾𝑦 + 𝛿𝑥𝑦. 

  

 

So, you put 𝑥 = 𝑋 + 𝑥∗ and 𝑦 = 𝑌 + 𝑦∗ like before. 

 

So, this will be  
𝑑(𝑌 + 𝑦∗)

𝑑𝑡
= −𝛾(𝑌 + 𝑦∗) + 𝛿(𝑋 + 𝑥∗)(𝑌 + 𝑦∗) 

 

So, I simplify  
𝑑𝑌

𝑑𝑡
= −𝛾𝑌 − 𝛾𝑦∗ + 𝛿𝑋𝑌 + 𝛿𝑥∗𝑌 + 𝛿𝑦∗𝑋 + 𝛿𝑥∗𝑦∗ 

 

And if you write this in the form 

 
𝑑𝑌

𝑑𝑡
= (−𝛾𝑦∗ + 𝛿𝑥∗𝑦∗) + 𝛿𝑦∗𝑋 + (𝛿𝑥∗ − 𝛾)𝑌 

 

So, we have x term, we have y term and we have the constants. 

 

So, with the same logic if (𝑥∗, 𝑦∗)  is our equilibrium solution it is going to satisfy this. 

 

So, if I put an 𝑥∗ here 𝑦∗ here, this is going to be zero and hence this part  

 

(−𝛾𝑦∗ + 𝛿𝑥∗𝑦∗) = 0. 
And we are left with  

𝑑𝑌

𝑑𝑡
= 𝛿𝑦∗𝑋 + (𝛿𝑥∗ − 𝛾)𝑌 

 



So, this is our linearized form and if we want to construct the matrix A from here, it will be 

 

𝐴 = (
𝛼 −

2𝛼𝑥∗

𝑘
− 𝛽𝑦∗ −𝛽𝑥∗

𝛿𝑦∗ 𝛿𝑥∗ − 𝛾
) 

 

So, we just take the coefficients from here and we put it here. 

 

Now, what I am trying to show you here is that we have the original equation  

 
𝑑𝑥

𝑑𝑡
= 𝛼𝑥 (1 −

𝑥

𝑘
) − 𝛽𝑥𝑦, 

𝑑𝑦

𝑑𝑡
= −𝛾𝑦 + 𝛿𝑥𝑦. 

 

Our previous derived formula says that you take this to be some  

 

𝛼𝑥 (1 −
𝑥

𝑘
) − 𝛽𝑥𝑦 = 𝑓(𝑥, 𝑦), 

this to be some  

−𝛾𝑦 + 𝛿𝑥𝑦 = 𝑔(𝑥, 𝑦) 
 and our matrix  

𝐴 = (
𝑓𝑥 𝑓𝑦
𝑔𝑥 𝑔𝑦

) 

 at the point (𝑥∗, 𝑦∗). 
 

So, if I find 𝑓𝑥 from here, that will give me 

                                                                      

𝑓𝑥 = 𝛼 −
2𝛼𝑥

𝑘
− 𝛽𝑦. 

 

if I differentiate it with respect to x. 

 

If I differentiate it with respect to y,  it is just 𝑓𝑦 = −𝛽𝑥. Differentiate this with respect to x, you 

get 𝑔𝑥 = 𝛿𝑦 and with respect to y, it is 𝑔𝑦 = −𝛾 + 𝛿𝑥. Then, 

  

𝐴 = (
𝛼 −

2𝛼𝑥

𝑘
− 𝛽𝑦 −𝛽𝑥

𝛿𝑦 −𝛾 + 𝛿𝑥
) 

 

and this need to be calculated at (𝑥∗, 𝑦∗), 
 

So I just put 𝑥∗ and 𝑦∗ here and you can see that both these matrices are same. 

 

So, whether you use this method or whether you use previous method, you get the same answer 

but then this is time saving, so we use this. 

 

So, you now have calculated the matrix A, we now have to look into the stability of the system 

and for that you need to find the equilibrium solution. 

 



 

So to find the equilibrium solution you have to put 

 
𝑑𝑥 

𝑑𝑡
= 0    ⟹ 𝛼𝑥 (1 −

𝑥

𝑘
) − 𝛽𝑥𝑦 = 0, 

and  
𝑑𝑦 

𝑑𝑡
= 0    ⟹ −𝛾𝑦 + 𝛿𝑥𝑦 = 0. 

 

So, from this equation you get  

 

𝑦(−𝛾 + 𝛿𝑥) = 0 ⟹ 𝑦 = 0 and 𝑥 =
𝛾

𝛿
 .  

 

So if you put y=0 here, in this particular equation, you get  

 

𝛼𝑥 (1 −
𝑥

𝑘
) = 0 ⟹ 𝑥 = 0 and 𝑥 = 𝑘. 

 

So for y = 0, you get two values of x. Hence, (0,0) and (k,0) are your steady state solutions. 

 

Now you substitute 𝑥 =
𝛾

𝛿
   here. If you do that, you get  

 

𝛼
𝛾

𝛿
(1 −

𝛾

𝛾𝑘
) − 𝛽

𝛾

𝛿
𝑦∗ = 0, 

 

𝑦∗ which I need to find. This is the common part which goes off, and you are left with  

 

𝑦∗ =
𝛼

𝛽
(
𝛿𝑘 − 𝛾

𝛿𝑘
). 

 

So, another non-zero equilibrium solution is 

 

(
𝛾

𝛿
,
𝛼

𝛽
(
𝛿𝑘 − 𝛾

𝛿𝑘
)). 

 

Now, before that if this equation represents a population. In that particular case, all the solutions 

have to be positive. 

 

So, we have to assume that all the parameters are positive, that is, 𝛼, 𝛽, 𝛾, 𝛿 and k, they are all 

positive and at the same time the equilibrium solution is positive. 

 

So, this is (k,0), this is, (0,0) and (
𝛾

𝛿
,
𝛼

𝛽
(
𝛿𝑘−𝛾

𝛿𝑘
)) is positive, for this has to be positive, this part 

has to be greater than zero. 

 

So, the condition that the non-zero equilibrium point will exist if we consider this as a population 

then it is 𝛿 𝑘 − 𝛾 > 0. 

 



 

So, the point is when you have the equation with parameters, you will see that either it is satisfying 

directly or you will get some condition for which need to be satisfied for finding the positive 

equilibrium solution and also for the stability of the system. 

 

Now let us look into the stability of the system, say, at the point (k,0). 

 

So, if you want at the point (k,0) then you find what is your matrix  

 

𝐴 = (
𝛼 −

2𝛼𝑥∗ 

𝑘
− 𝛽𝑦∗ −𝛽𝑥∗ 

𝛿𝑦∗ −𝛾 + 𝛿𝑥∗ 
). 

 

So if you want to find at the point (k,0), so I have to substitute 𝑥∗ = 𝑘 and 𝑦∗ = 0 and your matrix  

 

𝐴 = (𝛼 −
2𝛼𝑘 

𝑘
− 0 −𝛽𝑘 

0 −𝛾 + 𝛿𝑘 
). 

 

 So, if I simplify, I get this  

𝐴 = (
−𝛼 −𝛽𝑘 
0 −𝛾 + 𝛿𝑘 

) 

 

If I want to find the eigenvalues, then it is   

 

|𝐴 − 𝜆𝐼| = 0, 
which will give me  

 

|𝐴 − 𝜆𝐼| = |
−𝛼 − 𝜆 −𝛽𝑘 
0 −𝛾 + 𝛿𝑘 − 𝜆 

| = 0 

 

 

So, from here I get (𝜆 + 𝛼)(𝜆 − 𝛿𝑘 − 𝛾) = 0.   So, one of the value you can see 𝜆 = −𝛼  and 

another value is  

𝜆 = 𝛿𝑘 − 𝛾. 
 

This is clearly negative because 𝛼 is a positive constant, but this because of the existence of 

positive equilibrium, this is positive. 

 

So, one of the 𝜆 is one of the eigenvalue is negative, one of the eigenvalue is positive. So, at (k,0) 

system is unstable. 

 

Similarly, you can check for (0,0) and this non-zero equilibrium point, which I leave for practice 

for you. 

 

In my next class, I will be again discussing about the stability of the system but Lyapunov 

stability. 

 

Till then bye-bye.  
 


