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Hello friends. Welcome to lecture series on Essential Mathematics for Machine Learning. In

the last lecture we have seen that if two classes are linearly separable then we can construct a

error minimizing LPP whose objective value is 0. If the objective value is does not come out

to be 0 that implies that the two classes are not linearly separable. But, if we are interested to

find out the optimal separating hyper plane, then the method of finding error minimizing LPP

may not work.

It will give a linear classifier of course, but that may not be an optimal separating hyper plane.

So, how can we find an optimal separating hyper plane? Optimal means, the margin between

the two classifiers two bounding planes is maximum. How we can find out that hyper plane,

where the distance between the two bounded hyper plane is maximum that is the optimal

separating hyper plane. So, that comes under hard margin classifier.

So what is hard margin classifier and how we can construct an equivalent optimization

problem for linear classification problem, so that we can find out an optimal separating hyper

plane.
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So, let us discuss. Now, suppose we have patterns ok. How many patterns? Suppose, we are

having m number of patterns; x 1, x 2, x 3 up to x m and each pattern is element of R n ok.

And we are also supposing that these patterns are linearly separable ok. Having two classes;

plus 1 and minus 1. This d i, this is belonging to minus 1 and plus 1 ok, is the target value of

the ith data.

Therefore, there exist w belongs to R n and b belongs to r such that so, this w xi, w transpose

xi minus b is greater than 0, for all i which are in plus 1 label class and it is less than 0 for all i

which are in minus 1 label class. We have already seen that by suitable scaling this can be

transformed into greater than equal to 1, for all i which are in plus 1 label class and less than

equal to minus 1, for all i which are in minus 1 label class.



So, if you want to combine these two constraints, so, these two constraints can be combined

like this. d i w transpose x i minus b greater than equal to 1, for all i from 1 to m because there

are m number of patterns. See, if you put d i equal to 1, d i is either plus 1 or minus 1. These

are target these are labeling basically. 

So, if it is plus 1 then this will converge to the first constraint this constraint, if d i is plus 1. If

d i is minus 1 then you multiply both the side of the inequality by minus 1 and this will convert

to this inequality that is w transpose x i minus b less than equal to minus 1.

So, I want to say that the constraint, the constraint can be convert into a single constraint of

this, where d i belongs to plus 1 or minus 1 ok. Now next is; what is our aim? Our main aim is

to maximize the distance between the two hyper planes ok.
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So, now what is the distance, what is the margin? The margin is basically 2 upon norm of w,

ok. This is to maximize. Now it is same to say that this quantity is to minimize ok. Whether we

are minimizing norm of w or we are minimizing norm square of w both are same because norm

is a non negative quantity ok. So, it is equivalent to say that norm square w upon 2 is to

minimize. Now, how we can how we can write norm of w square? This can be written as w

transpose w. w; I mean inner product of w with itself. And under usual inner product it is

nothing but w transpose w.

So, what is the problem now? The problem is the problem is now converted into minimization

of 1 by 2, this is 1 by 2 w transpose w; this is to minimize, subject to this constraint, this

constraint ok. So, this constraint will come here, i from 1 to m. So, now, it is a very very

simple quadratic programming problem. In fact, it is a convex quadratic programming problem

because, diagonal elements are all 1 by 2 in this case and which is a positive definite and hence

convex.

So, it is a and constraints are linear of course. So, it is a convex quadratic programming

problem and we can have different algorithms to solve such type of problems. So, once we

find w and b from these two, so, then we can find the hyper plane which is w transpose x equal

to b and that is a hyper plane which is an optimal separating hyper plane. Now, here how many

constraints we are having? Here we are having m number of constraints, if we are having m

number of patterns. This m maybe 100, maybe 1000, maybe 500. So, depending on the

number of patterns there we are there we are having so many constraints. But, using Lagrange

duality method, we can reduce this number of constraints, so, which is computationally easy.

So, what is that Lagrange duality method let us see. See, what problem we are having here? 
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The problem which we are having here that is the hard margin classifier which I am calling is P

1 problem and P 1 problem is basically minimization of 1 by 2 w transpose w, subject to what

are the constraints? Constraint is d i w transpose xi minus b it is greater than equal to 1 and i is

from 1 to m. This is this problem is basically hard margin classifier.

Now, let us write a Lagrange function of this. Lagrange will be a function of w, b and alpha

i's. So, that is nothing but 1 by 2 w transpose w plus summation i from 1 to m because there

are m number of constraints ok alpha i it is 1 minus d i w transpose xi minus b because, we

have to write constraint in less than equal to format. So, that is why i put this side to right

hand side that is why we are having this here.

So, this alpha i is here are basically Lagrange multipliers. How many Lagrange multipliers we

are having here? m; alpha 1, alpha 2, up to alpha m. Now, if I want to write the KKT



condition of this problem, so, how can I write KKT conditions? What are the variables here?

Variables are w, b and alpha i this we have to find.

So, you w b and alpha i sorry, it is w b and alpha i. So, first you differentiate with respect to w

put it equal to 0. So, that implies if we differentiate this with respect to w. So, this is w only

ok. Now, here if we differentiate with respect to w, so, that is nothing but minus summation i

from 1 to m, ok.

It is alpha i d i x i which is equal to 0. So, this implies w is equals to summation over i from 1

to m alpha i d i x i. So, this is a first KKT condition. Next is you can take del l by del b equal

to 0. So, this implies if you are differentiating with respect to b. So, with respect to b, if you

differentiate, so, you will get summation i from 1 to m; it is alpha I, you are differentiating

with respect to b. 

So, that gives alpha i d i equal to 0. So, these are second KKT conditions. And of course,

alpha i should be non negative, Lagrange multipliers are non negative and next comes out

from the feasibility condition; the feasibility condition is d i w transpose x i minus b should be

greater than equal to 1.

And next is alpha i times 1 minus d i yeah alpha i 1 minus d i time w transpose xi minus b

should be 0, for all i. So, these are the different these are the different KKT conditions which

we are having here for this problem ok. Now if you write the dual of this problem P 1, then

the dual we can use the KKT condition to write the duals and as I already said that if I instead

of using this problem if I use the dual of this problem, then it will be computationally easy to

solve the dual of the given problem P 1.
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So, what is the dual? So, first this is a Lagrange function which we have already defined ok.
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Then it is then the KKT conditions of problem P 1 are this equal to 0, del L by del b equal to

0, that we have already discussed. The problem of the dual of the problem P 1 is given by;

what is the dual now?
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So, dual is given by this format. So, maximizing the Lagrange function, subject to gradient

respect to w of L is 0 del L by del b equal to 0 and alpha is greater than equal to 0.
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What this means? So, dual of the problem will be the dual of the problem P 1 is given by it is

maximizing Lagrange function which is a function of w, b and alpha, subject to the KKT

conditions; del w equal to 0, del L by del b equal to 0 and alpha i is non negative, for all i.

So, this problem I am calling as P 2. Now this condition I have already told you that this is

nothing but, as we have already seen here del of L respect to w is equal to 0 is nothing but w

equal to this. So, we can write it here. It is nothing but, w equal to summation i from 1 to m

alpha i d i x i ok. And this condition is nothing but summation i from 1 to m alpha i d i equal to

0. That is from this constraint, we are getting this thing. So, what is the objective function

now?
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So, let us see the objective function. So, objective function is L, L which is w, b and alpha. It

is nothing but, 1 by 2 w transpose w plus summation i from 1 to m ok. It is i from 1 to m alpha

i 1 minus d i w transpose x i minus 1 ok. Now it is equal to 1 by 2. So, what is L? L we have

defined here. It is alpha i 1 minus it is b ok.

So, what is w? w we have seen here. w is nothing but sum of sum from i from 1 to m alpha i d

i x i. So, if it is w transpose w. So, that comes under double summation, summation i from 1

to m, summation j from 1 to m it is alpha i. So, for one w I am representing by index I, for

another w I am representing by index j. So, it is alpha i alpha j as it is d i x i. So, it will be d i d

j x i transpose x j. So, it looks little bit complicated, but it is not if you open the double

summation.



So it looks it comes out to be a very simple expression plus this is summation alpha i which

comes here summation over i ok. Next term is minus it is summation again this w. You will

replace w by this term and i is already running here. So, let us suppose that for that w it is

index j. So, it is i then it is j it is alpha i again alpha j then it is d i d j x i transpose and this is x

j. And the last term is negative negative positive this is b will come out, this is summation i

from 1 to m, this is alpha i d i.

Now, this alpha i d i is the sum of alpha i d i from the second this constraint is 0. So, this will

go to 0 this term will vanishes then this term plus half and minus 1 will be minus half. So, this

is nothing but, minus 1 by 2 double summation over i summation over j alpha i alpha j d i d j x

i transpose x j and this is plus summation alpha i over i.

So, this will be the objective function of the dual problem, subject to what are the conditions,

these conditions we are having here. These are the these are the conditions ok.



(Refer Slide Time: 16:08)

So, here also we did the same thing and we obtain after simplification which we have

discussed.
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So, this will be the dual will be given by this problem. So, this constraint we have already

used, you see here this constraint we have already used. So, this will be this is the only

constraint which is remaining.

So, maximizing this function subject to this constraint and alpha i non negative. So, now, if we

leave non negativity restriction; then instead of m number of constraint what we are having in

the primal quadratic programming problem. Here we are having only 1 constraint. So, that is a

main important application of duality theory here in this machine learning, here in this support

vector machines ok.

So, computationally it reduces so much time and of course, memory also. So, the above

problem has only one constraint apart from the non negativity constraint also the maximizing,

here we are maximizing this function. So, maximizing a concave function and thus P 3 is



computationally easier to solve. The optimal solution alpha bar of P 3 will give the values of w

bar and b bar and thereafter separating hyper plane w transpose x equal to b bar can be

determined. 

So, in this way, if you are interested to find out the optimal separating hyperplane which is w

transpose x equal to b, so after solving this dual problem, we can find alpha bar and using

alpha bar from this we can find w bar ok. And then from the other conditions, from the other

conditions we can find b bar from which we can find w bar transpose x equal to b bar which is

the optimal separating hyper plane. Now, let us discuss one example. So, here we are having

two classes again; minus 1 and plus 1.
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So, these are the points 2 1, see 2 1, this is 1 2. So, these square boxes are the patterns in

minus 1 class and these circular boxes circular patterns are the patterns from plus 1 class. And



these of course, these are linearly separable. Now, if I want to find out the optimal separating

hyper plane, so, we have to construct a convex quadratic programming problem. So, how can

I construct a equivalent convex quadratic programming problem?
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So, let us see. What are the patterns we are having here? So, patterns for A minus are patterns

for A minus are 1 2, 2 1, 3 2 and 2 3. And patterns for A plus are; patterns for A plus are 5 4,

4 5 then it is 5 6, 6 5. So, these are two classes we are having here.

So, what is equivalent qpp that will be minimizing 1 by 2? So, all the patterns are in R 2. So, w

will belongs to R 2. So, that will be w transpose w that means, w 1 square plus w 2 square,

subject to what are the conditions. Conditions will be; so, condition we already know. See

what hard margin classification problem we are having? 1 by 2 w transpose w subject to d i w

transpose x i minus 1 minus b greater than equal to 1, i from 1 to m ok.



So if d i is minus 1 because for this it is minus 1. So, it is negative of w 1 plus 2 w 2, because

first pattern first x i; x 1 is 1 and 2 and this w is w 1 w 2. So, w 1 w 2 will multiply with 1 and

2. So, it will be w 1 plus 2 w 2, it is a simple matrix multiplication and this is minus b greater

than equal to 1. The second constraint will be minus of second pattern is 2 1 you substitute 2 1

here.

So, this will give 2 w 1 plus w 2 minus b greater than equal to 1, this is minus 3 w 1 plus 2 w 2

minus b greater than equal to 1, this is minus 2 w 1 plus 3 w 2 minus b greater than equal to 1.

Now, come to the plus patterns, for plus 1 class. So, it will be d i will be plus 1. So, that will

be nothing but, 5 w 1 plus 4 w 2 minus b greater than equal to 1, 4 w 1 plus 5 w 2 minus b

greater than equal to 1, then it is 5 w 1 plus 6 w 2 minus b greater than equal to 1, then it is 6

w 1 plus 5 w 2 minus b greater than equal to 1. And of course, w 1, w 2 and b are

unrestricted.

So, this is the this is the basically problem P 2, P 2 problem we are having now. So, we can

solve either this problem or we can write the dual of this problem using this formulation; we

can have the dual and we can solve either of the problem either this problem or the dual ok.
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So, if you solve this problem; so, we will get these are the constraints. So, we will get you can

use any solver to solve this problem. So, we will get w 1 equal to w 2 equal to 0.5 and b equal

to 3.5. Hence, the equation of the plane will be w transpose x equal to b, which is 0.5 x 1 plus

0.5 x 2 equal to 3.5. So, this is the this is basically the optimal separating hyper plane, where

margin is maximum.
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So, this plane is basically this plane is basically x 1 plus x 2 equal to 7 ok which is the optimal

separating hyper plane. So, we have seen that if you are having; if you are if you are interested

to find out an optimal separating hyper plane, so, that the error minimizing lpp may not give

the optimal separating hyper plane. If the two classes are linearly separable, then we can use

hard margin classifier.

So, what this problem is? In this problem, we will try to maximize the margin by formulating

an equivalent quadratic programming problem. That quadratic problem is also convex.

So, using KKT conditions and duality theory, we can also construct an equivalent dual of the

given problem, given quadratic programming problem. So, the problem can be solved either by

the formulating the qpp or by formulating its dual. It is always computationally easier to use

duality approach because it reduces number of constraints significantly ok. So, in the next



lecture we will see that if they are not linearly separable then how can we find an optimization

problem and how can we solve such problems; so.

Thank you. 


