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Hello friends. Welcome to lecture series on Essential Mathematics form Machine Learning. In

the last lecture, we have seen few concepts of ah machine learning; fundamentals of support

vector machines. Now, in this lecture we will see the Concepts of Duality which we will use in

soft margin or hard margin classifiers.

The concept of duality is important to find out Lagrange function to find out the dual of a

given problem so that, it will be computationally the problem will become computationally

easy to solve.
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So, what do you mean by duality and how can you find out dual of a general non-linear

problem? So, first it is some introduction. So, duality is used in mathematical programming for

many theoretical and computational developments in diverse fields including operation

research, management science and economics.

The duality principle what a duality principle is? The duality principle connects two programs:

one, the primal which is the constraint minimization or maximization problem and the other is

called the dual for which is a constraint maximization or minimization. Such that the existence

of optimal solution to one of them ensures an optimal solution of the other and the optimal

values of the two are.

So, the main important concept behind duality is that, we have 2 problems. Problem 1,

problem 2; is connect it connect the 2 problem in such a way that if you are having the optimal



solution of the 1 problem say 1, if you have the optimal solution of a problem 1; then it will

ensure the optimal solution of the other problem 2 also, and the objective value of both the

problems are equal.

So, that is the main concept of duality principle. Now, why duality? So, results developed in

duality theory have helped develop various numerical algorithms for solving certain

optimization problems. So, it is required to in developing various numerical optimization

algorithms.
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So, now the question is how can we write the dual of a given non-linear optimization

problem? So, suppose we have this non-linear optimization problem; minimization of a

function f x subject to g i x less than equal to 0; i from 1 to m, so there are m number of

constraints and we have a single objective f which is to be minimized.



So, this problem we are calling as problem P. So, where this function f is from R n to R; that

means, there are n number of unknowns g i are the function from R n to R; for all i. Now, to

find out the dual of this problem P, let us first write the Lagrange function of this problem.

How we define a Lagrange function? So, Lagrange function is basically function of two

parameters x and lambda, x is R n and lambda is in R m.

So, lambda are the Lagrange; a lambda are called Lagrange multiplier corresponding to the

constraints. How many constraints we are having in this problem P? We are having m number

of constraints. So, corresponding where we will be having m number of Lagrange multipliers

in the Lagrange function.

So, the Lagrange function is a function of two unknowns x and lambda, which may be defined

as the objective function; the objective function is f x here you see, objective function comes

here. And the sum of lambda i g i; i is from 1 to m because, there are m number of constraints.

So, this lambda 1, lambda 2, lambda 3 up to lambda n; these are called Lagrange multipliers.

So, in j we can also write this problem as f x plus lambda transpose g x; lambda transpose see

lambda is basically, lambda 1, lambda 2 up to lambda m, and g is basically g 1, g 2 up to g m.

So, when we multiply these two then we get, g 1 lambda; lambda 1 g 1 plus lambda 2 g 2 and

so on up to lambda m g m. So, in this way we can write we can write the Lagrange of a given

non-linear programming problem.
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Now, how can you write a dual of this problem? So, dual may be as, the dual of this problem

P is given as we write maximizing of Lagrange function; subject to gradient respect to x of this

Lagrange equal to 0; lambda greater than equal to 0.

So, this is how we can defined Lagrange we can define the dual of this problem P ok. Now,

this dual this problem can be rewritten as see what is the Lagrange function? Lagrange

function we have already seen. The Lagrange function is basically f x plus summation i from 1

to m lambda i g i ok.

So, this is Lagrange, this Lagrange will come here maximization of this subject to; now the

gradient of this function this Lagrange respect to x. So, gradient of this respect to x it will

come here. The gradient of this respect to x will come here equal to 0 and lambda i greater



than equal to 0 for all i. So, this is how we can write the dual of this problem P; then this dual

is also called Wolfe phase dual ok.
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So, if we are calling two problem as a; if one problem the initial the first problem is called

primal problem, and the second problem is called the dual problem. Now, there is some

relation between these two, as I already told you that the optimality, condition optimality of

one of the problem guarantee is the optimality of the other problem and vice versa.

So, there are some relations between these two and these are called duality relations. There

are certain duality theorems you see; so what are those results? Let us first try to understand

those results. So first is if f and g i; g i for all i are convex differentiable functions, in this

problem.



See, in this problem P if this f and all g i’s are convex then, this problem is called convex

programming problem. And now we denote this problem as CP ok. The problem P we are

calling as CP. So, the first result is which we are calling as weak duality result it states that, if

x is a feasible solution of CP and u, lambda is feasible for problem D, which is a dual of this

problem P of this problem CP then, this inequality always hold.

This inequality means the minimum value of the objective function of the primal problem P or

CP is always greater than equal to the maximum value of the objective function I mean the

value of the objective function of problem D.
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So, how we got this result? So, let us try to understand. So, we are having two problems here.

So, what is our primal problem? The primal problem is minimization of f x subject to g j x less



than equal to 0; j from 1 to m. And this problem if, f and g j’s are convex for all j; we are

calling as CP.

And the problem D which is a dual of this problem CP is given by maximization of Lagrange

function which is f x plus summation j from 1 to m lambda i lambda j g j x subject to the

gradient of this should be 0; that means gradient of f x plus summation j from 1 to m lambda j

gradient of g j x equal to 0; and lambda j greater than equal to 0 for all j.

So, this is this problem is D and this problem is CP. So, what is weak duality result? Weak

duality result says that, if x is any feasible point of the problem CP and u lambda is any feasible

point of the problem D then, f x is always greater than equal to f u plus lambda transpose g u.

So, now we have we have to prove this. So, it is given to us that f is convex, and g j for all j’s

are convex; x is feasible for this problem and u lambda is feasible for this problem D. So, let us

try to prove this result. So, since by the convexity of f at u, we have f x minus f u is greater

equal to x minus u transpose gradient of f u.

This is why the convexity of f; because f is a differentiable convex functions hence, this result

will hold, that we have already discussed in our in the previous lectures. Now, since u is

feasible for this problem D. So, you multiply both sides by x minus u transpose so, that means,

this will be equal to minus x minus u whole transpose summation i from 1 to m lambda j

gradient of g u ok.

This is because you see u lambda is feasible for this problem D. So, you multiply both sides by

x minus u transpose; so, this quantity will be equal to the negative of x minus u whole

transpose summation lambda j gradient g j u. Now, again so say this inequality as inequality 1.

So again, by the convexity of g j at u, we have we get g j x minus g j u is greater than equal to

x minus u whole transpose gradient of g j u.
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So, multiply by lambda j both sides of the above constraint of the above inequality, and sum up

all the m in equations inequalities, we get; so, now what we will obtain? Summation lambda j

it is lambda j g j x it summation over j minus summation over j lambda j g j u is greater than

equal to minus x minus u whole transpose summation j lambda j gradient of g j u; this is

suppose this is in equation 2.

Now, you can use this in equation because this side is less than equal to this side oh this is

positive this is not negative; this is positive. So, now you from one and two see this side is less

than equal to this side ok, and the negative of negative of this side is greater than equal to this

side.



So, using 1, from 1 and 2 what we obtain? From 1 and 2 we get here we obtained this from

this side it is f x minus f u is greater than equal to so, you multiply both sides with minus 1. So,

this factor will come before towards ok; axis feasible for this problem.

So, g j x will be less than equal to 0 for every j ok. So, negative of g j will be greater than

equal to 0 for all j and lambda j’s are non-negative. So, from this we will obtain that this

quantity with negative sign is greater than equal to 0; so that means, it is greater than equal to

g j lambda j g j u plus 0 ok, because this because this is less than equal to 0; for every j and

lambda j’s are non- negative.

So, when you multiply and sum it sum it up for all j; so this quantity will be less than equal to

0 with negative it will be greater than equal to 0. So, what we obtain from here now it is f x is

greater than equal to f u plus summation over j lambda j g j u. So, hence we got the result. So,

this is our weak duality results result. So, basically weak duality result is important to find out

the bound of the problem; as the primal problem or the dual problem.

If there is any u or lambda which is feasible for the problem D then, we can easily say that this

value will be finite for that u and lambda and f x will always be greater than equal to that

value. So, that will be helpful in finding out the bound of a given problem. So, the primal

problem or the dual problem similarly if you know x as a feasible problem for the problem CP

then, you know this value some finite value; then we can say that the objective function a dual

problem will always be less than equal to that value.

So, this is helpful in finding out the bounds of the primal problem or the dual problem. Now,

the next is now the next result from the weak duality result that if x bar is a feasible point of

CP and u bar lambda bar is feasible for D, and suppose the value of the objective function of

the primal at x bar and the value of the dual problem at u bar lambda bar both are equal; both

coincides. Then, as far as the optimal solution of optimal solution for CP and u bar lambda bar

will be the optimal solution for problem.
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So, the proof is again very easy to obtain see here what is given to us? It is given to us that f x

bar is equal to f u bar plus summation over j lambda j bar g j u bar. So, it is given to us. And

we have to show that x bar and x bar and u bar lambda bar are nothing but the optimal

solutions of the primal or dual problems.

So, if you want to show that x bar is an optimal solution or dual problem then, we need to

show that f x bar will be less than equal to f y for any feasible y, 2 problem CP. So, let us try

to prove this result proof let y be any feasible point of the problem CP ok. So, we need to

show that f x bar is less than equals to f y ok; this we need to show.

So, now by the weak duality result, we have f y is greater than equals to fu bar plus summation

over j lambda j bar g j u bar; since, y is feasible point for the any feasible point of the primal



problem and u bar lambda bar is also a feasible point of the problem D; then by the weak

duality result this inequality will hold ok.

And this quantity is nothing but is equal to f x bar. So, it is equal to f x bar. So, this implies f x

bar is always less than equals to f y and hence, we can say that x bar is nothing but the optimal

solution of the primal problem because, this value is always less than equal to f y for any y; for

any feasible y so; that means, x bar is the optimal solution of the primal problem.

And similarly, if you want to show that u bar lambda bar is an optimal solution or dual

problem then, now so this implies x bar is the optimal solution of the CP.
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 Now, let u y u lambda be any feasible point of the problem D ok. Now, we have to show that

u bar lambda bar is an optimal solution. That means, so we need to show that f u bar plus



summation over j lambda j bar g j u bar is greater than equal to f u plus summation over j

lambda j g j u; because it is a maximization type problem.

So, again this is easy because, by the weak duality results, what we have? We have f x bar is

greater than equal to f u plus summation over j lambda j g j u g j u; because x bar is the

feasible point of the primal problem and u lambda is a feasible point of the dual problem.

So, this implies since, this is equal to because this is equal to this so we can replace this by

this. So, this is this implies f u bar plus summation over j lambda j g j u bar is greater than

equals to f u plus summation over j lambda j g j u bar g j u. So, this implies u bar lambda bar u

bar lambda bar is the optimal solution of D.

So, hence we have proved the result. So, in this way we can say that, if the optimum values of

the primal and dual are equal then the points where they are equal are nothing but the optimal

solutions of the respective problems.
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So, next here is strong duality result with the state that, if x bar is the feasible point of CP and

the basic constraint qualification hold at x bar then, there exists lambda bar such that x bar

lambda bar is optimal to the problem D. Further, the optimum values of the two objectives

coincide.

So, basically weak duality result is helpful in finding the bounds of the primal of the dual

problems ok. And their strong duality result guaranties the optimal solution of the one

problem if we have the optimal solution of the primal problem. If we have the optimal solution

of primal problem then, we there exist an optimal solution in the dual problem and the value of

the objective values of both are equal ok.
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So, now let us write to try to find that how we can write a dual of a QPP, quadratic

programming problem. So, this is a Quadratic Programming Problem. So, how we can write a

dual we already know that this is a QPP because, objective function is quadratic in nature and

all constraints are linear. So, here A is an m cross n matrix, c and x belongs to R n, b belongs

to R m and Q is a n cross n symmetric positive semi definite matrix. So, again to write a dual

we can first write the Lagrange of this function.
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So, what is the problem we are having? Problem is minimizing c transpose x plus 1 by 2 x

transpose Q x subject to Ax less than equal to b and x greater than equal to 0. Now, this

constraint can be re written as A x minus b less than equal to 0 and this constraint can be

written as minus x less than equal to 0. Let the that the Lagrange multipliers corresponding to

these constraints are u, and let the Lagrange multiplier of these constraints are v.

So, L which is now a function of x, u and v can be written as, first is the objective function;

objective function is what? c transpose x plus 1 by 2 x transpose Q x ok; plus now it is u

transpose Ax minus b we are there is u transpose G x, it is u transpose Ax minus b; G x is this

and this collectively we are calling as G x and this is plus v transpose minus x. So, this was the

Lagrange function of this problem QP, this problem is QP.



Now, how can we write a dual of this problem? The so, a dual of this problem will be D here

QD can will be now, it is maximization of L x, u subject to gradient with respect to x of L will

be 0 and u greater than equal to 0 and v greater than equal to 0; as we have already discussed

the prop the dual of a given a NLP given non-linear problem will be nothing but, the Wolfe

phase dual is nothing but, maximizing of the Lagrange function subject to gradient respect to x

of L is 0.

And the Lagrange multipliers must be non-negative. So, now let us rewrite this problem. So,

what will be QD now? It will be maximization of 1 by 2 c transpose x; oh it is not 1 by 2 it is c

here. It is c transpose x.
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So, it will be c transpose x plus 1 by 2 x transpose Q x plus u transpose A x minus b minus v

transpose x subject to what are the conditions? So, you can verify from here subject to

gradient respect to x. So, what will the gradient with respect to x?

You differentiate this function with respect to x so, it will be c plus Q x because q is a

symmetric matrix; otherwise it will be q transpose x, but here Q x is a symmetric matrix so Q

transpose would be Q; plus it will be A transpose u and minus v equal to 0; v I equal to 0 ok.

And this u is non-negative and v is non-negative ok. Now, this can be rewritten as, now if you

see if you multiply this equation by c transpose by x transpose so what will obtain? So, it will

be x transpose c plus x transpose Q x plus A x transpose A transpose u minus x transpose v

equal to 0; and x and u and v non negative.

So, I am trying to like rewrite these equations these this problem. So, basically dual is this; but

I am trying to write this problem in a simplified way. So, I can replace this quantity this is x

transpose v which is same as x transpose v whole transpose because, this is a scalar quantity.

So, this is equal to v transpose x.

So, I can replace v transpose x from this equation to this. So, if I replace this if I replace this

from here to this equation what will be what I will obtain finally? So, finally I will obtain, now

you can see from here.
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So, this is a dual which we are already obtained. So, now you can replace v from this equation

to this ok. So, if I replace this finally after simplification of this simple equation I will obtain

this. Now, this is equal to v; so I can write v as greater than equal to 0; so it will be greater

than equal to 0. So, v is eliminated from the entire expression. So, now I can say that this is

also the this is the dual of this problem QP. This problem QP ok.
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So, let us take a problem now. Suppose, you are having this QPP, and you want to write a

dual of this QPP. So, how can you write?
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So, what is the QPP now? It is minimization of x 1 minus 6 whole square plus x 2 minus 4

whole square 4 and 6 ok; it is 4 here; 6 here. Subject to what are the equations? The first

equation is 2x 1 minus x 2 less than equal to 6, and x 1 minus x 2 less than equal to 2, and x 1,

x 2 non negative. So, this is the primal problem.

So, what we are dual of this problem? We have already seen, the dual will be nothing but, it

will be x 1 minus 4 whole square plus or if you want to eliminate u then that will be nothing

but, so you have to otherwise you have to transform; so anyway you can write in that way

only; x 2 minus 6 whole square plus so that the Lagrange multiplier correspond to this is u 1,

for this is u 2, for this is a v 1 and v 2.

So, u 1 2x minus x 2 minus 6 plus u 2 times x 1 minus x 2 minus 2 minus v 1 x 1 minus v 2 x 2

ok. Subject to now, take the gradient of this problem the gradient will be 2x 1 minus 4; first



with respect to x 1 2 x 1 minus 4 it is plus 2u 1 plus u 2 minus v 1 equal to 0, and it is 2 x 2

minus 6 minus u 1 minus u 2 minus v 2 equal to 0 ok; u 1, u 2, v 1, v 2 non negative.

Now, so these are dual of this problem. This is a dual ok. Now, at this point 0.8, 4.4. So, if

you are taking x 1 as 0.8 and x 2 as 4.4. So, it is satisfying all the constraints this point is

satisfying the constraint; and the objective value of this problem is suppose this objective value

is f and this is suppose g the objective value coming out to be 12.8.

Now, if we take this problem then, here we take x 1 as 0.8, x 2 as 4.4 ok; and u 1 as 1.6, v 1,

v 2, u 1, u 2 both all are 0. So, this is basically so lambda 1 here given as 3.2 so it is 3.2.

Now, if you take this point, this point satisfying both the dual constraint all the dual

constraints in fact, and the objective value at this point is also the same as f is also the g is also

at this point is 12.8; you can verify very easily very easy you can verify because, when x 1 is

0.8 and x 2 is 4.4, so this is 0.

So, this is 0; u 2, v 1, v 2 are already 0. So, this whole quantity is 0; so we left with only this

these two terms which are same as the; which is same as a two terms of f. So, this is nothing

but, a same objective value.

So, hence we can say that since the value of the objective function at these two points

coincide; so these are nothing but, the optimal solutions of the prog this problem and this

problem respectively ok. So, in this way if you want to write out a dual of a given NLP; here

for illustration I have taken quadratic a programming problem.

In general, if you are having any non-linear problem which is a convex programming problem

then, though you can write the Wolfe phase dual in this manner. You have a given non-linear

problem, minimization type subject to g j’s less than equal to 0. You know you can add a dual

as the maximization of a Lagrange function subject to gradient of Lagrange respect to x equal

to 0 and all Lagrange multipliers greater than equal to 0. So, that is a general format of writing



a dual of a given non-linear programming problem. In the next lecture we will see that how we

can find out hard margin classifier using duality theory so.

Thank you very much.


