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Hello friends. Welcome to lecture series on Essential Mathematics for Machine Learning. In

the previous lectures, we have seen that what important properties of convex functions and

numerical optimization and other techniques for machine learning. Now, in this lecture we will

see some of the important aspects of Support Vector Machines. 
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Now, let us start. So, first of all what do you mean by machine learning? So, the term machine

learning basically deals with learning from the data which could be in the form of images,

measurements, observations, patterns or records. 

So, suppose you have some data, which may be in the any of the form of maybe in the form of

images, measurements, observation, patterns or records then learning from these data is

basically called machine learning. Now, what is the aim of any machine learning? The aim of

any machine learning algorithm is to perform well on the training data and also to ensure good

results in future. 

Whatever training data we choose, in that training data, machine learning algorithm should

perform good and it also give good result good also ensure good results in future. Machine

learning involves the study of three main problems what are three main problems?

Classification, next is clustering and next is regression. 
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So, these are the three important problems of any machine learning of machine learning

algorithms. There are many approaches available in the literature to deal with these problems,

these problems means classification, clustering and regression. To deal with these type of basic

problems of machine learning there are many algorithms given in the literature. 

Now, Mangasarian has introduced an approach called ‘Mathematical programming approach’.

So, there is one approach which is called mathematical programming approach and that was

given by Mangasarian. What is the advantage of this approach? Why we are using this

approach? Why not some other approach? 



So, the advantage of using this method is that most of the problems involved in machine

learning result into linear programming problems very simple to handle, quadratic

programming problems or some convex programming problems. 

And we already know that if we are having some convex optimization models or convex

programming problems then the KKT conditions become sufficient, sufficient means that

whatever KKT conditions we are having the point, which satisfies those KKT condition will be

global minimum point of the problem. 

So, these are main beauty of using mathematical programming approach that, it results into

either linear programming problem or quadratic programming problem which is very easy to

handle. 
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Now, machine learning techniques are broadly classified into two classes: number 1 supervised

learning, and number 2 unsupervised learning. The problem of classification and regression

comes under supervised learning while the clustering belongs to the class of unsupervised

learning. 

So, we are not going much detail of this topic we are may focusing on this lecture on support

vector machine. So, this is a simple introduction of machine learning. 
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Now, what is support vector machine? Vapnik has developed this theory. So, it has developed

the support vector machine algorithms. The main advantage of SVM over other methods is

that it result a convex programming problem and hence we always obtain a global optimal

solution because it is a convex optimization model. 



Moreover, the KKT conditions become sufficient. So, this is again the same advantage of as

we are having for mathematical programming approach the same advantage here for using

SVM.
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Let us discuss binary pattern classification. Classification problem we are discussing here just

to introduce you what SVM is? So, first of all what do you mean by binary class? Binary class

means 2 class ok. Now, if you are having 2 class and you want to classify these 2 classes then,

what are different methods?.

How we can classify the 2 classes? Now, these 2 data sets are not very small, these are big

class of data sets. And what are different algorithms by which this big class of data set can be

separated, can be classified? 



Now, first of all here if we are; if we are; if we are saying pattern. So, pattern means an

element of R n, we already know what R n is? R n means is set of n tuples. So, pattern means

an element of R n. Let m 1 patterns having class of label plus 1 and m 2 pattern having class of

label minus 1. You are having 2 classes; one class I am denoting by plus 1 and the other class I

am denoting by minus 1. 

Suppose, the data points of plus 1 class are m 1, and the data class of minus 1 points I mean

minus 1 labelling are m 2. So, total how many points? Total there will be m 1 plus m 2 points.

So, we are denoting if we denote it by a matrix of this class plus 1 class ok; having m 1

patterns and each pattern is in R n. 

So, it will be a matrix of order m 1 cross n; that means, a collection of m 1 patterns having

class of label plus 1. And similarly, if we say minus 1 labelling; so class of minus 1 labelling

will be notify this matrix which is order m 2 cross n that is the collection of m 2 patterns

having class of label minus 1. 
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So, this is a first thing; that we you are having two data sets. One I am denoting by a plus 1,

other I am denoting by a minus 1; my aim is to classify them. Now, they are these 2 classes: A

plus and A minus. 

These are said to be linearly separable, if there exists a hyper plane w transpose x equal to b

where, w is in R n and b is in R such that for A plus this is greater than eb and for A minus is

less than eb and is a vector of ones. See here this blue squares this denote data points of plus 1

label; that means, A plus class and this circles this denote another class which is of minus 1

label and denoting by A minus. 

So, since you are able to find a hyper plane which is w transpose x equal to b such that, these

2 classes are classify; these 2 classes are classified. So, we say that these 2 classes are linearly



separable, and if it is not possible to classify them linearly then, we say that they are

non-linearly separable. 

So, let us discuss this by an example so that, it will be clear to you that when 2 classes have to

be linearly separable.
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Suppose, you are having patterns like A plus, A plus patterns are suppose 1, 1, 1, 2, 2, 1, 3, 2

and 4, 1. These patterns are in R 2 4 patterns are in R 2; that means, here n equal to 2. 

So, now how many patterns in A plus class? 1, 2, 3, 4, 5. So, there will be 5 patterns in A plus

class. So, A plus will be a matrix of order 5 cross 2 and what is this matrix will be? This will

be 1 1, 1 2, 2 1, 3 2 and 4 1. This is 5 cross 2. 



Now, if you take another class A minus, suppose this of order say 4 cross 2 which is given by

6 2, 2 6, 7 1, and 7 3. It is 4 cross 2. So, here I am considering 2 classes this by label plus 1,

this by label minus 1. These of these there are 5 patterns belonging to A plus class or plus 1

class and there are 4 patterns belonging to minus 1 class. 

Now, if you try to plot these points, 1 1. So, suppose it is 1 1 1 2; so, it is 1 2, 2 1; so, it is 2 1

3 2; so, it is 3 2 3 2 then 4 1; so, it is 4 1. So, these are plus 1 label ok A plus. 

Now, what are A minus 6 2, 1 2, 3 4, 5 6. So, 6 2, 6 2 means this point. 2 6, 2 6 means

somewhere here suppose 2 6. 7 1, 7 1 means somewhere here. 7 3, 7 3 means somewhere

here. So, these are of my A minus class. 

Now, clearly you can easily visualise that you can find a hyper plane here. May not be unique;

but you can find a hyper plane such that, these two classes are separable. So, since we are able

to find such hyper plane; so, we say that, these two classes are linearly separable. 

So, suppose one I am predicting one hyper plane. So, one hyper plane you can say x plus y

equal to 6; it is x, it is y, it is 6, it is 6. Now, so if you now if you take it is x plus y equal to 6;

if you take A plus times 1 1 ok, this is w 1 is 1, w 2 is 1 ok; this is 1 1. 

So, it is now less than equal to if you take 6 times 1 1 1; it is 1 2 3 4 5, 1 2 3 4 5. So, this you

can easily verify see A plus is what? A plus is this matrix. So, this row this column the first

row first column is 2; 2 is less than 6 true. Now, this row this column is 3; 3 less than equal to

6 true again, 2 plus 1 3, 3 less than equal to 6 true, 3 plus 2 5, 5 less than equal to 6 true, 4

plus 1 5, 5 less than equal to 6 true.

So, here this is your w, this is your w this is your w and this is your e vector of 1’s, this is your

e, this is b; b is here this is b. So, this is satisfied. Now, again if you take A minus 1 1. So, it is

greater than or equal to 6 times 1 2 3 4. So, it is 1 1 1 1 here e is this vector I mean it is 4

cross 1, here e is 4 cross 5 cross 1 ok.



Now, if you take A minus 1 1, 6 plus 2 because, first row first column is the matrix

multiplication; first row first column is 8; 8 greater than equal to 6 true. It is 2 plus 6 8, 8

greater than equal to 6 true, 7 plus 1 8, 8 greater than equal to 6 again true and 7 plus 3 is 10;

10 greater than equal to 6 is again true; so this is true and this is true, so we can say that this

hyper plane you can opt for this hyper plane which can which classify these two classes

linearly ok. 

So, hence we are having this definition A plus w greater than eb, and A minus w less than eb.

Where, e is a vector of ones of appropriate dimension; it depend what A plus or A minus is. 
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So, if it is not linearly separable; so we are having some non-linear curve here. So, we say that

they are non-linearly separable. 
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Now, the question arises geometrically if we are having a very small data data points of A plus

class and A minus class we can geometrically visualise that whether they are linearly separable

or not. But, in practical applications it may not be true. 

In practical applications we have a large data sets. Now, to see whether these two classes are

linearly separable the given classes are linearly separable or not. So, what are different

methods? Because, once they are separable then only we can pay the properties of the classes. 

So, the first properties given by Mangasarian; this property is Mangasarian what is the

property? Properties let A and B with 2 finite sets in R n. Then A and B are linearly separable

if and only if they are convex hulls are disjoint. 



So, this is the first property that by which we can say there are whether two classes are linearly

separable or not. So, what do you mean by a convex hull? Convex hull is a smallest convex set

containing that set. 
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Suppose, you are having 3 points. So, what is the smallest convex set containing these 3 point

and the set is convex. The smallest convex set will be this set; this set is the smallest convex

set containing these 3 point and the set is convex. So, this is the convex hull of these 3 points. 
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So, let us understand this by an example. Let us suppose A plus has 3 points. The 3 points of

A plus are minus 1 0, 0 1, 1 0. So, A plus the points of A plus are minus 1 0, 1 0 and 0 1. And

the points of A minus are 0 0, 1 1, 0 2; it is 0 0, 1 1 and 0 2; let us see ok.

Now, what are points of A plus minus 1 0, minus 1 0 is somewhat here. 1 0, 1 0 is somewhere

here. 0 1, 0 1 is something here. Now, what is your convex hull of these 3 points? The convex

hull of these 3 point is this triangle ok. This triangle. 

Now, let us see what A minus is? A minus is 0 0 so, this point. I am denoting the points of A

minus y cross sign, and 1 1, 1 1 is something here this is 1 1. Next is 0 2, 0 2 is something

here. And what is the convex hull of these 3 points now? The convex hull of these 3 point is

this triangle. 



So, now are they disjoint? Because, this convex hull this triangle of A plus and this convex hull

of A minus; they are not disjoint because this is common. So, since they are not disjoint. So,

they are not linearly separable. So, not linearly separable. 

You can also see by geometry; see we are having these 3 points here and we are having these

3 points here. So, we cannot find a plane such that we can classify these 2 data points and

these 2 classes. So, this is the; this is the first most result that if the convex hull of 2 classes are

disjoint then they are linearly separable, and vice versa. 

But again this it is a very small set, so we can say we can find the convex hull and we can say

that they are disjoint or not. But, how we can say that whether a given sets mathematically

how can we show? That whether a given 2 data points are linearly separable or not. 

So, we have a 1 result based on error minimising LPP which will deal with that by formulating

that problem into LPP; we can see that whether a given problem with a given binary

classification problem is linearly separable or not. But, before going into that result first we

will see first we have to understand this inequality this result; what this result is basically?
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That the inequality A plus w greater than eb and A minus w less than eb by suitable scaling can

be rewritten as this why? And how? Is it true? Is it really true? So, that we have to see ok. 

Because, why we are doing like this? See, if we are having a strictly greater than or a strictly

less than type of constraints and we are formulating a LPP; it is not an easy to solve such

problems. See, if we are having less than equal to or greater than equal to type constraint or

equality type constraint in LPP; that we have different methods if a algorithms to solve such

problems, but not of a strictly greater or strictly less.

So, we anyhow we want to convert these strictly the stick inequality type constraint into less

than equal to or greater than equal to type constraint. So, how can we convert these 2

constraint to these types? So, let us try to understand. 
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So, the first constraint is A plus w greater than eb from where we get this constraint, because

if you are having 2 class of data points; one denoted by a cross, other denoted by a dot

suppose, and you are hyper you are having a hyper plane which is w transpose x equal to b

which can classify these 2 classes linearly; then for 1 class of data points this inequality will

hold, and for other the class of data point another inequality will hold. Now, how can we

convert this and this inequality? A minus w less than eb ok, 1 is greater 1 is less.

Now, let us try to understand. Now let so, this A plus w which is greater than eb implies, A

plus w is greater than equal to eb minus alpha i where alpha is are greater than 0 for all i, it is

greater, greater means plus because if it is greater than eb then it is further greater than eb plus

alpha i because, alpha i is strictly greater than 0 of course. Because, eb is greater than eb plus

alpha i. 



Now, let us take let alpha star is equal to minimum of alpha i minimum over i. It is minimum

of alpha i it is minimum alpha i suppose, alpha star. So, that implies alpha star is less than

equals to alpha i for all i. 

So, that means, A plus w will be greater than equals to eb which is alpha i that will be again

greater than equal to eb plus alpha star times e because, alpha i is greater than equal to alpha

star for all i. So, this implies A plus w is greater than equals to b plus alpha star times e. So,

this is suppose 1. 

Now, let us take A minus w less than eb. So, this further implies A minus w is less than or

equal to eb minus say beta i where, beta i is greater than 0 for all i again; beta j you can take

beta j. Because eb is will be less than or equal to eb minus beta j. 

So, this further implies A minus w will be less than equals to eb plus beta star times e where,

beta star is equal to minimum of beta j because, here from here in the same way as we did here

will be less than equals to beta j. 

So, it is then minus so, here it is here it is minus sorry. So, negative of beta star will be greater

than or equal to minus of beta j. So, that means, this will be minus of beta j. So, that means,

minus of beta j will be less than or equal to beta star. So, this is second expression suppose. 
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So, now if you choose now, let gamma equal to minimum of alpha star beta star. So, this

implies gamma will be less than equals to alpha star and gamma is again less than equal to beta

star. So, what does 1 implies then? 1 implies see alpha star from here alpha star is greater than

equals to gamma ok. 

So, so from here from this inequality 1 what we have concluded? So, this will be A plus w

greater than equals to be plus gamma e. And from 2 what we obtain A minus w will be less

than equals to be minus gamma e this you can understand from here because, minus beta star

minus beta star will be further less than or equal to gamma from here ok.



So, now these 2 inequalities can be further written as this the above inequalities can be

re-written as, now you can divide by gamma throughout and again you are here also you can

divide by gamma throughout. 

So, you will obtain A plus say w star greater than equals to b star times e plus e and A minus a

w star is less than equals to b star times e minus e. Where, w star is nothing but, w upon

gamma and b star is nothing but, b upon gamma. 

So, in this way we have converted the strict type of inequalities into less than equal to or

greater than equal to types. So, that is basically suitable scaling. So, suitable scaling will not

affect see, we have only changed w or b by some by applying some constant gamma ok. If

they are linearly separable, still they will be linearly separable and if they are nonlinearly

separable then still they will nonlinearly separable. 

So, we have seen that if we have 2 classes 2 classes of we are labelling with plus 1 or minus 1

and we try to see that whether they are linearly separable or not, the first way out is if you are

able to find the plane which then classify them linearly; that means, they are linearly separable. 

Next is if you find the convex hulls of the 2 classes and they are coming out to be disjoint then

we can say that they are linearly separable. In the next lecture we will see that how can we

mathematically formulate a problem by which we can see there are 2 given class of data points

are linearly separable or not. So, these are references which we have used here. 

Thank you. 


