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Hello friends, welcome to lecture series on Essential Mathematics from Machine Learning. So,

in the last lecture we have seen some numerical optimization; some concepts of numerical

optimization. We have seen a basic steepest descent method to solve an unconstrained

optimization problem.

In this method basically I have already discussed that we have take our direction that is which

is negative of gradient of f; in which f decreases most rapidly. And we move from x k to x k

plus 1 such that x k plus 1 is nothing, but x k plus alpha k d k; where d k is a direction that is

the negative gradient of f at x k and alpha k is optimal step size. In this lecture we will see

some more techniques which is required in machine learning.



(Refer Slide Time: 01:19)

So, first of all Newton’s method so what Newton’s method is; if we have an equation say y

equal to f x or f x equal to 0 we want to solve this equation f x equal to 0 we want to find out

the root of this equation. Then how can you find the root of this equation? That we have so

many methods in numerical analysis one of them is Newton Raphson method; in which

basically here we are having g y equal to 0.

Now, we want to find out root of this equation for which y g y is equal to 0. So, how we can

find out? At least approximate root of this equation so that for that we have a recursive

algorithm that is given as that this this recursive algorithm is called Newton Raphson method.



So, what this method is basically; we go from one iteration to other iteration in such a way.

First we fix our initial guess say that initial guess is y 1 or y 0 you can take y 0 then from y 0

to y 1 if you put k equal to 0 so, that is equal to g y 0 upon g dash y 0.

Of course, g dash y 0 g dash y k should not equal to 0 for any y k this method will work only

when g dash y k is not equal to 0 for any y k. So, as this y k plus 1 tends to y k; that means,

we are tending towards a solution.
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Now, if you are if we are having in the same lines if you are having a unconstrained

optimization problem; which is minimization of f x subject to x belongs to R n without any

restriction on n x, x may be any vector in R n.



So, how we can find how we can optimize how we can minimize this function f. So, for that

now suppose it is given to us as function f is differentiable the differentiable function. Then of

course, if you want to maximize if minimize this; that means, we want to find out the root of

root of this equation; gradient of f x equal to 0 you want to find out that x bar where gradient

equal to 0.

Because if you want to maximize or minimize a function; that means, we have to d y by d x for

a single variable function; here it is n variable function. So, for a single variable function how

we can find out maxima or minima? We first find d y by d x put it equal to 0 that will give

critical points and we find second derivatives we see that where it is maxima or minima or

higher order derivatives.

If it is n variable function; so what are those point where it attain minima where gradient is

equal to 0. So; that means, instead of solving this problem we have to solve we have to solve

this equation we have to solve this actually system of equations; we have to find that x bar

where this is equal to 0. So, how can we; how can we solve this equation? How we can find

out that x bar where this is equal to 0?

So, that can be find using Newton’s scheme and that Newton’s scheme is basically it is on the

same lines as a Newton Raphson method that is x k plus 1 equal to x k minus Hessian matrix

of x k at x k whole inverse into gradient of f x k. Now, how we come how we arrive at this

recursive formula how you obtain this? So the derivation is quite easy. So, let us see.
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Suppose you approximate this f x by a Taylor series as f x k plus x minus x k whole transpose

gradient of f x k plus 1 by 2 x minus x k whole transpose Hessian matrix of f at x k into x

minus x k. So, we take a quadratic approximation of this function by the Taylor series

expansion.

Now, what we want? We want that x where gradient of f x equal to 0 ok, we want this. Now

take the gradient of f respect to x both sides and let us see what we will obtain. So, this

implies; so this is equal to 0 now this is x k the fix point. So, if this is a fix point; so gradient of

this will be 0. Now this is x, x, x into this so when you differentiate this respect to partial

differential respect to x. So, that is nothing, but gradient of f x k.

The second term is of course, 0 because x k is fixed and when you differentiate this respect to

x k sorry x partially then we will get what? Plus Hessian matrix of f at x k into x minus x k and



that is that must be 0. Now this implies Hessian matrix of f at x k into x minus x k is equal to

minus of gradient of f x k. And this implies take suppose this is invertible.

Now, if this is invertible; so we can write x minus x k is equals to negative of H f x k whole

inverse into gradient of f x k. And this implies x equal to x k minus H f x k; that means,

Hessian matrix of f at x k into gradient of f x k. So, this is nothing, but x k plus 1 in the next

iteration. So, as soon as this approaches to this x k we say that there that will be the optimal

solution of a given problem.

The limitation of this method is that we are we are supposing that Hessian matrix of f at x k is

invertible for every x k. If it is not then this method is not applicable ok. So, H f, x k is

invertible is a invertible matrix at x equal to x k. So, this this is our supposition.
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So, basically this I have already explained you. Now this method has the order of convergence

2 that is p is equal to 2 for this method. And it has a descent property that we can easily show.

Descent property means f at x k plus 1 is less than f at x k.

For solving quadratic functions involving positive definite quadratic form; it will take exactly

one iteration to find out the optimal solution to find the optimal solution exactly one step.
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So, let us see one problem based on this; suppose this is a quadratic expression which you

want to minimize it is a unconstrained optimization problem. And suppose initial guess is 1 2

you can take other initial guess also; I am take a I am taken initial guess as 1 comma 2. So,

how we can find out the optimal solution of this problem using Newton’s method?
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So, what is the problem we are having? So, the minimization of f x 1, x 2 which is equal to x 1

square minus 3 x 1, x 2 plus x 2 square 3 x 2 square oh sorry it is 3 x 2 square. And initial

guess is 1 comma 2 transverse; so this is the initially guess we are having.

So, first you find gradient of f; gradient of f we del f upon del x 1 del upon del x 2 that will be

2 x 1 minus x 2 and minus x 1 plus 6 x 2 this transpose will be the gradient of f.

Now, what is Hessian matrix of f? This is 2 minus 1 minus 1, 6 ok. Now this is always

invertible this is 12 this is a determinant of h f is always non 0 so for any x k because it is

independent of x ok. If you want x 2 x 2 means x 1 minus Hessian matrix of f at x 1 whole

inverse gradient of f at x 1 this is why Newton’s method Newton’s formula.



So, what is gradient of f at x 1? Now gradient of f at x 1; x 1 is x 1 is this this is x 1 basically x

1 is 1, 2. Now, you substitute 1 and 2 so, it is 0 we substitute 1 here 2 here so it is 11 ok. So,

now, x 1 is 1 2 minus Hessian matrixes. Now you have to find the inverse of this matrix. So,

what is the inverse of this matrix? Inverse of this matrix will be 6, 2 and this is again I think

minus 1 minus 1 or 1, 1.

So, it is 1, 1 it is 1, 1 and that is divided by the determinant of this which is 1 upon 11

determinant is 11 here into gradient of f at x 1 that is 0 11. So, this is 1, 2 minus it is 6, 1, 1, 2

and that will be 0, 1. So, this is 1, 2 minus this row this column is 1, this row this column is 2,

and that is simply 0, 0. So, x 2 comes out to be 0, 0.

Now if you find x 3.
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So, what will be x 3? x 3 will be x 2 minus Hessian matrix of x 2 whole inverse gradient of f x

2. So, x 2 is 0, 0 this is this is same which is 6, 2, 1, 1 and what is gradient of f x 2 at 0, 0? At

0, 0 it is; obviously, 0.

So, when gradient see when gradient of f at x 2 comes out to be 0; that means, it is an point of

minima. So, of course, that will a point of minima that which we can verify from here also; so

this is 0, 0 so; that means, 0, 0 is the point of minima; it is a point of minima ok.

So, since this this is positive definite form so this method converges only in; one iteration.
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So, this is Newton’s method for solving such type of problems. Now how can we solve a

constrained optimization model? So, here I am discussing one method that is penalty method

that; how we can discuss a constrained optimization problem.
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Now, suppose you are having a non-linear programming problem like this; that is minimization

of f x subject to g i x less than equal to 0 i from 1 to m and suppose this f and all g is are

differentiable functions. So, a numerical optimization technique for constrained optimization

problem aims at converting the NLP to an unconstrained optimization problem which can be

solved using numerical technique for unconstrained optimization problem.

If you are having any constrained optimization problem. The main aim of any algorithm first

for handling constrained optimization problem is to convert that problem into unconstrained



type. If we can convert that problem into unconstrained type, then the usual technique like;

descent method or other methods we can apply for solving that problem.
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So, one such method is penalty function method. Now what is the penalty function in penalty

function what we do? We define a function P x P tilde x which is which we say that it is 0 if x

belongs to S here S is a feasible region.

So, S is the feasible region which is consisting of all x such that g i x less than equal to 0 for all

i. And if we are saying that it is infinity if x does not belongs to S; does not belongs to x. So,

of course, if you minimize this function; if you minimize this function; that means, if x belongs

to S then this will be 0, if x belongs to S; that means, x is the feasible region x is the feasible

point and then this will be a 0.



Then minimum of this function and minimum of this function will coincide. That means, NLP

the problem NLP and this modified unconstrained optimization problems are equivalent. And

if x does not belongs to S then this will tends to infinity.

So, the main aim is this will a minimum f this belongs to if this is 0 and that is possible when x

is in feasible region; that means, we are finding a feasible point where we are minimizing

simultaneously f x. So, this this unconstrained optimization model is basically equivalent to the

problem NLP. 

Now the problem here is that this function is not smooth not differentiable it is discontinuous.

So, if we want if we have converted this problem into an unconstrained optimization model; if

you want to apply the techniques for the numerical techniques for solving unconstrained

optimization model then that those methods may not be applicable.

So, how we can make this problem as a smooth problem I mean differentiable problem; so that

the techniques of unconstrained optimization problem may work.
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So, what we what we do ? We defined a function P x the penalty function P x as maximization

maximum of g i x and 0 this whole square and sum up to i from 1 to m. Of course again if we

are minimizing f x plus alpha times P x.

See if x is in S; S means feasible region. If x is an feasible region; that means, g i x is less than

equal to 0 for all I, if g i x is less than equal to 0 for all i then the maximum of g i x and 0 will

be nothing, but 0 itself. And the sum of squares of 0 is 0 so; that means, this will be 0; that

means, it will comes to minimum of f x.

The same problem; that means, feasible x such that minimum of f x; that means, finding the

optimal solution of this unconstrained optimization model is same as finding an optimal

solution of the constrained optimization problem NLP. Why we are constructed penalty



function like this? We have we can construct there are other methods also to find the penalty

function this is one of them to make the function smooth ok.

Here we attach alpha also alpha is a sequence of alpha is the sequence basically; you can take

alpha as 1, alpha as 10, alpha as 100; we increase alpha we tend it to infinity basically. We tend

into infinity; so that f x will approach to that so that this function will approach to f x.
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So, so this is the mean algorithm basically; what is an algorithm? First of all we define a

suitable penalty function; here we have taken penalty function as sum of maximum of g i x and

0 whole square. Then choose an increasing sequence of positive real numbers which tends to

infinity that is sequence alpha k, k from 1 to infinity, such that; alpha k greater than 0 and

alpha k plus 1 is greater than alpha k. In general we take alpha 1 as first 1, alpha 2 as 10, alpha

3 as 100, alpha 4 as 1000 so on.



Then we choose arbitrary starting point x naught in R n and construct the following

unconstrained minimization problem as this ok. And solve it using unconstrained minimization

technique you can use steepest descent method or you can use some other technique for

solving this unconstrained optimization model.

Now, if x 1 be is the optimal solution of this for alpha 1; then taking that x 1 as an initial S put

here alpha 2 and find again the optimal solution of that unconstrained optimization model

using any unconstrained minimization technique.
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The process will go on till we have either alpha k P k P x k less than epsilon; that means, this

is very small penalty function is very small or this q x alpha k minus f x k is very small which

one and the same thing basically for some tolerance level alpha epsilon greater than 0.



So, this is the main idea behind this these are main algorithm behind penalty function method.
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How we can say that this is convergent? So, we have various theorems also we are not going

to discuss the proof of the theorem; so I am just stating here for your understanding. So, what

is the first lemma or the theorem is; let alpha bar let x k bar denote the optimal solution of

UMP at alpha equal to alpha k UMP k, UMP is Unconstrained of Minimization Problem.

This is this problem ok; that is this equal to this that is this minimum is attained at x equal to x

bar x k bar where q x alpha k is this alpha k greater than 0. Then the first of all at x k plus 1

whatever we have obtained and at alpha k plus 1 this is always greater than equal to this term;

that means, this quantity is keep on increasing.



Now, P k x k x k bar is greater than equal to P k x k plus 1 and x k is always less than equal to

f k plus 1; that means, this is this we are going to minimize. Now the second lemma is if x let x

bar be an optimal solution of the given Non-linear Programming problem N L P then for each

k this inequality holds; that means, we are always we are; that means, at x k plus 1 it is always

less than equal to f x f x bar where x bar is an optimal solution.
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So, let us discuss this example quickly by this problem. We have to solve the NLP using

penalty function method starting with x naught equal to 2, 2 and epsilon equal to point 0 0 1.

So, let us see what is the problem.

The problem here is we have to minimize 3 x 1 is square plus 2 x 2 square plus 2 x 1 x 2 minus

20 x 1 minus 16 x 2 subject to x 1 plus x 2 equal to 5.
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Now, how we can use penalty function here? x 1 plus x 2 equal to 5 can be written as x 1 plus

x 2 less than equal to 5 and x 1 plus x 2 greater than equal to 5. This can be written as minus x

1 minus x 2 less than equal to minus 5 or minus x 1 minus x 2 plus 5 less than equal to 0 and

this is basically x 1 plus x 2 minus 5 less than equal to 0.

So, how can we define penalty function now? The penalty function will be defined in the here

as maximum of x 1 plus x 2 minus 5 the first constraint 0 whole square plus the second

constraint maximum of the second constraint 0 and whole square; that is the penalty function.

Now, if this is negative if this is suppose this is negative then maximum will be 0 from here and

then this will be positive then this is the maximum. And if this is negative then maximum is 0

here and this is positive in either case in any case we are having this as a penalty function ok.



Because if this is negative then we will get 0 here, but on the in the on the same if this is

negative then this will be positive. Then the maximum of these two will be this only this is

square and if this is negative then from here it is 0 and from here it is x 1 plus x 2 minus 5.

So, in any case we will get the penalty function as x 1 plus x 2 minus 5 whole square. So, what

will be our unconstrained problem now? Minimization of f x plus alpha k into x 1 plus x 2

minus 5 whole square; this will be the unconstrained minimization problem which we are

having.

Now let us put alpha k equal to like k equal to 1.
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If you put k equal to 1 in this; take alpha 1 equal to 1 suppose. So, what will be this function?

This is say this is g x. So, this is f x plus alpha 1 times x 1 plus x 2 minus 5 whole square.

So, what is f x? f x is given to us as 3 x 1 square plus 2 x 2 square plus 2 x 1 x 2, minus 20 x 1

minus 16 x 2, alpha 1 is 1 into x 1 square plus x 2 square plus 25 minus 10 x 1 minus 10 x 2

plus it is minus 10 x 1 minus 10 x 2 plus 2 x 1 x 2. So, this is nothing but 4 x 1 square plus 3 x

2 square plus 4 x 1 x 2 minus 30 x 1 minus 26 x 2 plus 25.

Now, we have to minimize this we have to minimize this g x; how we can minimize this g x?

So, here it is a quadratic form we can directly differentiate it also or we can apply some

numerical optimization technique for unconstrained minimization problem. So, we can use

steepest descent method also to find optimal solution of this problem.

So, how we can do that? We can take the initial guess as what given to us? Initial guess is 2,

2, 2, 2, is given to us. So, it is x naught which is 2, 2 is given to us. So, you we find gradient

of f gradient of f is 8 x 1 plus 4 x 2 minus 30 and here it is 6 x 2 plus 4 x 1 minus 26. And then

we find we find gradient of f at here it is g here it is g; so it will be gradient of g. So, gradient

of g at we have to find at 2 comma 2.

So, that we can find out as; 16 plus 8 minus 30 and it is 12 plus 8 minus 26 and that will be 24

that is minus 12 and that is 20 minus 6; so that will be gradient of g. So, we know the method

a method is x 1 equal to x naught plus alpha naught and to minus of gradient of this that is 12

and 6 ok.

So, here it is 30; so it will be 30 itself. So, it is 30 it is 24 minus 30 is minus 6 so it is minus 6.

So, here it is comes out to be 6. So, this is now this is 2 plus 6 alpha naught and again 2 plus 6

alpha naught.

So, now, as we do in steepest descent method we will put this x 1 and this x 2 in this function

g and we will find out that alpha naught where this attains minima by putting derivative of g



respect to alpha naught equal to 0 and the process continued till you get an optimal solution of

this problem.

So, what I want to say that basically for once you get a penalty function you define you define

your g x; which is unconstrained optimization model like this like this. And changing the value

of alpha 1 here I have taken alpha 1 equal to 1 and solve it by steepest descent method; in the

same way you will put alpha 1 equal to 10, alpha 2 equal to 10, alpha 3 equal to 100 and so on

till you get the required tolerance deliver.
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So, here when we put alpha 1 alpha k equal to 1 in this problem. Then applying any

unconstrained algorithm unconstrained minimization algorithm alpha 1 comes out to be this;

this is basically this is basically optimal solution of this problem optimal solution of this

problem.



And for this f x k is comes out to be this q x k alpha k means it is g basically g comes out to be

this, P x k is this and alpha k P x k is this, because alpha k is 1 here if it is 1 then this is simply

seen.

Now, take alpha k equal to 10, alpha 2 equal to 10, if alpha 2 equal to 10 apply the same

algorithm, find out the optimal solution same iteration we will get this row. And for alpha k

equal to for k equal to 3 alpha will be 100 the optimal solutions comes out to be this.

Now here this is this is 0.0009 which is less than 0.001 as given this problem as a stopping

criteria; so we will stop here. So, this is basically a method for solving for solving constrained

optimization model.

So, basically in any constrained minimization algorithm the main aim is to convert that

problem into an unconstrained minimization problem. And then we will solve that

unconstrained of minimization problem by using any such technique. So, these are main

motive behind this.

So, this is one illustration or one method similarly we have. So, many other methods also for

solving constrained minimization problems. So, we have seen that if you are having

unconstrained minimization problem we have various method; the Steepest Descent method,

Newton’s method, Conjugate Gradient method, other method also and for solving constrained

optimization problem also we have various methods in the literature one of one of them is

Penalty Function method.

So, using these techniques using these numerical such techniques we can develop our

algorithm; if we are having an optimization models in machine learning algorithms. And that

we can solve either by unconstrained optimization methods or by constrained optimization

models methods so.

Thank you. 




