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Lecture - 20
Minimal Polynomial and Jordan Canonical Form

Hello friends. So, welcome to the another lecture on Minimal Polynomial and Jordan

Canonical Form of the course Essential Mathematics for Machine Learning. In the last lecture

we have learn about minimal polynomial and Jordan canonical form of a matrix, in this lecture

we will continue from the previous lecture and we will learn about the Jordan canonical

transformation as well as what is the relation of minimal polynomial with Jordan canonical

form of a matrix.
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So, I will start this lecture with Jordan canonical form transformation result. That every n by n

matrix a is similar to a Jordan canonical form J that is A equals to SJS inverse where S is the

matrix containing the eigenvectors and generalized eigenvectors of A and J is the Jordan

canonical form of the matrix A. In the last lecture we have learn how to write J from the

matrix A in this lecture we will learn how to calculate this matrix S and then what is the

relevance of this particular transformation in machine learning.

(Refer Slide Time: 01:53)

So, for writing S as I told you S is a matrix having columns as eigenvectors of A as well as

generalized eigenvectors of A. We know how to calculate eigenvectors, but we do not know

how to calculate generalized eigenvector. So, let me define generalized eigenvectors of a

matrix A. If A is an n by n matrix a generalized eigenvector of a corresponding to eigenvalue

lambda is a non zero vector X satisfying A minus lambda I raised to power p times X equals to



0. For some positive integer p such that A minus lambda I raised to power p minus 1 times X

not equals to 0. 

It means X is a vector in the null space of a minus lambda I raised to power p what is

eigenvector? Eigenvector is a vector in the null space of A minus lambda I whereas, a

generalized eigenvector is a vector which is in the null space of A minus lambda I raised to

power p; such that it is not a vector in the null space of A minus lambda I raised to power p

minus 1 and so, on ok. So, this is the definition of generalized eigenvector.
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Now, why we need generalized eigenvector? As you know that we have seen a matrix B in the

last lecture which is having the form like this 1 0 1, 0 1 1, 0 0 1 and then we have seen that

lambda equals to 1 1 1 is the eigenvalue of B. Now eigenvectors comes out to be 1 0 0

transpose and 0 1 0 transpose. So, here geometric multiplicity of lambda equals to 1 is 2 while



the algebraic multiplicity is 3 ok. So, when we write S in B equals to SJS inverse then two of

the columns of S comes from the eigenvectors 1 0 0 and 0 1 0.

However, what about this column? Because S would be a 3 by 3 matrix because B is 3 by 3.

So, these columns will come from the generalized eigenvector, it will be a generalized

eigenvector of B now since B minus lambda, lambda is 1. So, B minus I X is having only 2 l I

solutions that is X 1 let us say this is my X 1 this is X 2 and B minus I X 2 equals to 0.

So, third vector I will take a generalized eigenvector which is B minus I square X 3 equals to

0 and how to calculate it? This can be written as B minus I X 3 equals to X 2 by solving this

non homogeneous system where X 2 is already known to you or X 1. We multiply both side

by B minus I then it will become square here it will become B minus I times X 2 and that is

equals to 0. So, hence X 3 is a generalized eigenvector which you can obtained by solving this

or by solving this homogeneous system.
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So, now see an example here we are having this matrix it is a 3 by 3 matrix and the

eigenvalues are 1 1 and 3. Eigenvalue lambda equals to 1 is having algebraic multiplicity 2

while the eigenvalue lambda equals to 3 will be having algebraic multiplicity 1. Now

eigenvector corresponding to lambda equals to 3 comes out to be 1 2 2. Eigenvector

corresponding to lambda equals to one comes out to be 1 0 0.
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So, here you can see that lambda equals to 1 is of algebraic multiplicity 2 and geometric

multiplicity 1. So, what I will do? I will find out a generalized eigenvector corresponding to

lambda equals to 1 that is I will solve this system A minus I whole square X equals to 0. So,

by solving this I will get a vector which is 0 1 0.

So, what I got here? Eigenvector sorry lambda equals to 3 is X 1 equals to 1 2 2, eigenvector

1 0 0. Now how to write Jordan canonical transformation of A? So, A equals to S J S inverse

what is S here? I will take X 1 that is 1 2 2 then I will be having X 2 1 0 0, X 1 X 2 and now

third column comes from the generalized eigenvector that is 0 1 0.

So, this is your matrix S now how to write J? So, you have written eigenvector corresponding

to lambda equals to 3 in the first column. So, you write Jordan block corresponding to lambda



equals to 3 here. So, one algebraic multiplicity, one geometric multiplicity. So, it will be one

Jordan block of size one that is this one.

Now corresponding to lambda equals to 1, algebraic multiplicity is 2 while the geometric

multiplicity is 1. So, a Jordan block of size 2. So, it means 3 1 1 0 1 and then 0 0 0 0 and then

you will be having this is your J S inverse. So, inverse of 1 1 0 2 0 1 2 0 0. So, this is Jordan

canonical transformation of A. Now here you can see if you compare the matrix A here J is a

sparse matrix when compared to A and sparsity is very important in machine learning. 

So, one of the relevance of this Jordan canonical form in machine learning is instead of you

can take J as the sparse version of A and then what you can do? You can perform various type

of dictionary learning algorithm or let us say compressive type of thing on J you can go to a

smaller version compressed version of J, you can perform some of whatever processing you

want there basically in image processing based machine learning and then you can come back

you can reconstruct it based on the l 0 optimization that is the sparse norm of optimization and

then you can reconstruct back your matrix A with the help of S that is one of the relevance.

Now this is the case here now I want to show you another important property of this matrix A

in terms of Jordan canonical form that is relevance with minimal polynomial. So, you see here

if I ask you, what will be the minimal polynomial of A? So, if you see here A is 1 1 0 0 1 2 0 0

3 and J comes out to be 3 0 0 0 1 1 and 0 0 1.
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 Now if I ask you tell me about minimal polynomial of A. So, minimal polynomial of A I can

write from here and it will be lambda minus 3 which is coming from the Jordan block and then

from the Jordan block I will write lambda minus 1 square how? So, if this power this power in

the minimal polynomial gives you the size of largest Jordan block corresponding to that

particular eigenvalue, we will see an example of it.
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So, if X 1 X 2 X n is set of L I eigenvectors and generalized eigenvector, then S can be

written in this way that is each eigenvector can be written in the column in the Jordan

canonical form which we have seen from the example.
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Now, find the Jordan canonical transformation of this matrix A another example. So, matrix is

2 2 1 0 2 minus 1 0 0 3. So, from here we can see eigenvalues are 2 2 and 3 because it is an

upper triangular matrix so algebraic multiplicity of lambda equals to 2 is 2 while the algebraic

multiplicity of lambda equals to 3 is 1.

Now what algebraic multiplicity tells you? Sum of sizes of Jordan blocks corresponding to

lambda. So, what should be the sum of sizes of Jordan blocks corresponding to lambda equals

to 2? It should be 2 and geometric multiplicity tells the number of blocks. So, if we calculate

here, we see that geometric multiplicity of lambda equals to 2 is 1 and geometric multiplicity

of lambda equals to 3 is also 1.

So, you will be having one Jordan block of size 1 corresponding to lambda equals to 3 while

one Jordan block because G M is 1 for lambda equals to 2. So, one Jordan block



corresponding to lambda equals to 2 of size equals to algebraic multiplicity of lambda equals

to 2 that is 2 and then you can find out the third column of this matrix S I calculating the

generalized eigenvector corresponding to lambda equals to 2.
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And then by doing this we got the Jordan canonical form.
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Another example it is very interesting example. So, you see this matrix say again 3 by 3

matrix, I am taking eigenvalue of this matrix comes out to be 3 3 3. So, one eigenvalue is 3

with algebraic multiplicity 3. So, in Jordan canonical form of A there will be Jordan blocks of

size total sum will be 3 corresponding to eigenvalue lambda equals to 3. If I calculate the

eigenvector corresponding to lambda equals to 3, then A minus 3 I X 1 equals to 0 gives me X

1 equals to 1 2 0. So, hence geometric multiplicity of 1 is 1. Now calculate generalized

eigenvector. So, I need to calculate two generalized eigenvectors here.

So, one I am calculating using A minus 3 I square X 2 equals to 0 and that gives me X 2

equals to 1 1 1 and then another one I am calculating A minus 3 I raised to power 3 into X 3

equals to 0 which gives me X 3 equals to 1 minus 1 1. So, here I will be having J only one

Jordan block of size 3. So, J becomes 3 1 0 0 3 1 0 0 3 and the corresponding matrix S will be



1 2 0 is the first column 1 1 1 is second column and 1 minus 1 1 is the third column and here A

will be S J S inverse.
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So, what we have seen? If I talk the relation between JCF and minimal polynomial the

eigenvalues are the entries on the main diagonal in the Jordan canonical form of a matrix A if

the minimal polynomial of A is lambda minus lambda 1 raised to power s 1 lambda minus

lambda 2 raised to power s 2 lambda minus lambda k raised to power s k where S i is the size

of the largest Jordan block corresponding to lambda i in A. 

So, what this power is giving me for each eigenvalue factor? It is giving me the size of larger

Jordan block corresponding to that particular eigenvalue. Characteristic polynomial of A is

given by this one where r i is the number of occurrence of lambda i on the main diagonal



means, r i are the algebraic multiplicity of each lambda I corresponding lambda i the geometric

multiplicity of lambda i is the number of Jordan blocks in A. 

So, s i is giving me the size of larger Jordan block while the geometric multiplicity is giving me

the total number of blocks and if I am having these information’s that about s i r i's and

geometric multiplicities then I can write the Jordan canonical form of a matrix.
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Let us see an example based on these information. A is a 6 by 6 matrix such that the

characteristic polynomial of A is lambda minus 3 raise to power 4 into lambda minus 4 raised

to power 2. So, what information we are getting from this that, we are having eigenvalue 3

with algebraic multiplicity 4 and eigenvalue 4 algebraic multiplicity of lambda equals to 4 is 2

now 1.



If the minimal polynomial of A is lambda minus 3 raised to power 3 and lambda minus 4 raised

to power 2, then what will be the Jordan canonical form? So, let us try to write it what this

thing is telling me? The size of larger Jordan block. So, I have the sum of total sizes of the

Jordan blocks corresponding to lambda equals to 3 is 4 out of which largest Jordan block is of

size 3. So, for largest size is 3. So, only possibility left that another Jordan block of size 1.

So, I can write here 3 1 0 0 3 1 0 0 3 that is one of the Jordan block that is corresponding to

this factor, then another of size 1. So, it means what is geometric multiplicity of lambda equals

to 3? 2 that is the total number of Jordan blocks corresponding to lambda equals to 3, then

you are having lambda minus 4 here total size is 2 largest block size is 2. So, the only

possibility there is only one block of size 2.

So, this is the Jordan canonical form of A; however, if I am having this minimal polynomial is.

So, let me do it here if m A lambda is giving you lambda minus 3 square lambda minus 4

square, then now total size corresponding to lambda equals to 3 is 4 out of which largest size

is 2. So, what I am having? Total size for largest is 2. So, what possibility left? Another maybe

of size 2 or it is 2 plus 1 plus 1.

So, here we are having two possibilities while there will be a Jordan block corresponding to

lambda equals to 4 of size 2. So, what will be the Jordan canonical form in this case? If I

consider this particular thing then 3 1 0 3 that is first Jordan block 3 1 0 3 and then 4 one sorry

it is 4 here 4 1 0 4 or if I take this particular case then in this case J becomes 3 1 0 3 3 3 and

then 4 1 0 4 ok. So, in that way you can write the Jordan canonical form of a given matrix

based on the information given to you about characteristic polynomial and minimal

polynomial.
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Another important aspect I will say the applications, here is of this similarity transformation is

calculating the functions of the linear transformations or functions of the matrix. So, you know

that I can write a matrix A equals to S J S inverse. Now a certain class of functions f if you are

calculating this function of A, it becomes S times f J into S inverse similar to diagonalization.

So, for example, I need to calculate A raised to power 100 then which become S J raised to

power 100 into S inverse calculating J raised to power 100 of a sparse matrix is quite easy

when compared to calculating the 100 power of A dense matrix.

Another if you need to calculate e raised to power A then S e raised to power J S inverse and

now when you will calculate this e raised to power J you have to calculate it Jordan block wise

and that will be quite easy when compared to e raised to power A with matrix A. Similarly we

can have trigonometric functions sin a cos a those are having some of infinite terms and you



can calculate here it very easily. So, this is another application of this important this particular

similarity transformation.
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These are the references for the last two lectures means this lecture and previous lecture, I

hope you have enjoyed this lecture.

Thank you very much.


