
Essential Mathematics for Machine Learning
Prof. Sanjeev Kumar

Department of Mathematics
Indian Institute of Technology, Roorkee

Lecture - 18
Linear Discriminant Analysis

Hello friends. So, welcome to Module 18 of this course Essential Mathematics for Machine

Learning. In first couple of lectures, we have seen about principal component analysis. In this

lecture, we will talk about Linear Discriminant Analysis that is again a very popular technique

to play with data in machine learning and again it is very easy mathematical concept based on

eigen values and eigen vectors.

(Refer Slide Time: 00:56)

So, let us start it and why we need LDA. So if you see this data set here, it is a two

dimensional data set and again two classes. One class is represented by the green square and



another one with red circle. So, if you see this class is easily linearly separable. If you put a

line here, then the data become linearly separable. If you apply the PCA on this data PCA

project it to lower dimensional space that is one dimensional space by projecting data in the

direction of maximum variance.

So, if I see this is the after applying the PCA on this data, I am having this kind of data. So,

now you can see I am having mixing of this data. This data is no more linearly separable like

here because here you can separate this data in are two by a line, but here in one d you cannot

find out any point. One side of that point you are having green patterns and another side of the

point you are having the red class pattern.

So, what we are observing here the direction of maximum variance may be useless for

classification. Why because my data is linearly separable here. I can use a linear classifier for

classifying this data, but if I am coming to lower dimensional space, what I am having? My

data is no more linearly separable. 

So, why to come to lower dimensional or in other way I want to say that I can go to lower

dimensional, but it should preserve the property of linear classification of the data means if the

data is linearly separable in the higher dimensional space, then after projecting into lower

dimensional space, the data should be still linearly separable. So, how to find out such a line,

so that the property of linear seperability should be preserved?



(Refer Slide Time: 03:09)

So, for example, here the main idea of linear discriminant analysis is find projection to a line

such that samples from different classes are well separated or linearly separated.

So, for example, if you see again these data, so this is the example of PCA and it is not well

separated, but instead of this if the same data I project onto this line, you can see this data

here. You will find the green cluster here, you will find the red cluster and this data will be

well separated. So, now the objective of linear discriminant analysis is to find out the direction

of such a line for a given data set like the objective of PC was to find out the direction of

maximum variances.

Here the objective is different. Find direction such that if we project the data on the line on

those directions or on the sub-space of those direction, the data should be well separated. So,

this is the idea of linear discriminant analysis. Now, in this lecture we will learn how to do it



and again I told you like PCI, it is very easy. Just we will play with eigen values and eigen

vectors of the matrix.

(Refer Slide Time: 04:34)

So, let us see here if I am saying that after projection my data should be well separated or

linearly separated, then one can say in that case what should we have? We should have a small

clusters like here of the data or not a small cluster, but the centroid of the data after projection

should be far away from each other. So, for example, if you see here this mu 1 is the centroid

of the data in two dimension means before projection and mu 2 is the mean of the data before

projection for class 2.

So, I am having two class data and then, if I project it on to x axis means on the on to a

horizontal line this mu 1 cap and mu 2 cap are the centroid of the data after projection to the

horizontal line. So, similarly mu 1 tilde and mu 2 tilde are the projection of mu 1 and mu 2 that



is the centroid of the data of different classes before projection to after projecting on to a

vertical line.

So, if I project data onto a horizontal line you can see this is the distance between mu 1 cap

and mu 2 cap. If I project onto vertical line, this is the distance between mu 1 tilde and mu 2

tilde. So, now if I am assuming that the mean of the two classes after projection should be far

away from each other means maximize the distance between the mean, then in this case this

distance is bigger than this one but in this direction the data is not well separated while in this

direction the data is well separated.

So, the concept or the idea which we have taken that larger the distance between the mean of

the two classes, the better is the data will be well separated after projection. No, it is not true

due to this example. So, we are missing something.
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The mean should be far away from each other is that it does not consider the variance of the

classes because in this direction if I project on to horizontal line, the data is not well separated.

Why because in this direction I am having bigger variance of the data when compared to

vertical direction because in vertical direction, variance is quite small.

(Refer Slide Time: 07:25)

So, I have to normalize this idea that is the mean should be far away from each other after

projection by the variance. How to do it? So, how to normalize it? So, concept of LDA is

clear to you by now.



Now, suppose we have two classes and a d-dimensional samples x 1 x 2 x n where n 1 samples

are coming from class 1. So, let us say this class is c 1 and n 2 samples are coming from class

2 let us say c 2.

Now, if x i be a data point, so what n 1 samples are coming from class 1 and n 2 samples are

coming from class 2. So, n 1 plus n 2 equals to n. Now if x i be a data point, then its

projection on the line having direction given by unit vector v is given as v transpose x i that is

the dot product between v and x i. 

So, we are assuming that we are having n samples from d-dimensional space, n 1 samples from

class 1, n 2 samples are coming from class 2 and the projection as I told you that if I want to

project a point x i on a line having direction given by unit vector v, then this projection is given

by v transpose x i.

Now, let mu 1 and mu 2 be the means or centroid of class c 1 and c 2 respectively. Before

projection means in original dimension or for original data points then if mu 1 delta denote

that the mean of samples of class 1 that is class c 1 after projection, then what we are having

mu 1 tilde equals to how many total points from class 1 n 1?

So, 1 upon n 1 summation all points belongs to class 1. So, x i belongs to c 1 and these are n 1

points v transpose x i. So, I can take v transpose out 1 upon n summation x i belongs to c 1 to

n point x i. This is v transpose and what is this? This is mu 1. So, mu 1 tilde is v transpose mu

1.
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Similarly, we have mu 2 tilde equals to v transpose mu 2. In LDA what we need in LDA we

need to normalize the distance between the two means after projection that is absolute value

of the difference of mu 1 and mu 2 by variance or I am writing scatter. So, now how to define

these scatters? So, let y i equals to v transpose x y means be the projected sample.

So, then the scatter for samples of class c 1 is given by let us say s 1 tilde square and this is y i

belongs to class c 1 and then y i minus mu 1 tilde whole square. So, it is variance only just we

have not taking 1 upon n 1 here. Similarly for class 2, it will become y i belongs to c 2 y i

minus mu 2 tilde square.
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So, these are these two are giving the scatters. Now, thus we need to project our data onto a

line having direction v such that which maximizes. So, something like this somewhat it should

maximize. So, instead of absolute I am taking the square. So, the same thing will happen. So,

it will say you that mean of the two classes after projections are far away from each other.

So, distance between the two means after projection we are maximizing why we have to

normalize it. So, so what it is saying? It is saying that the class 1 is scatter after projection

should be small. Similarly it is saying for class 2 and it is saying you that mean of the two class

should be as far away as possible. So, in that way what we are having? We are imposing both

the conditions here that the mean should be far away from each other and we have normalized

that by the scatter also.



So, now how to do it? So, now if we find v which makes J v large we are guaranteed that the

classes are well separated, ok. So, this is important point. So, first what we need to do, we

need to do this objective function, we need to write in terms of v.

(Refer Slide Time: 18:09)

So, how to write it in terms of v? So, now what we are having, we are having J v equals to mu

1 tilde minus mu 2 tilde square upon S 1 tilde square plus S 2 tilde square.

So, we need to write this J in terms of v. So, now define the separate class scatter matrix S 1

and S 2 of classes c 1 and c 2 means before projection. So, what will be S 1. So by the

concept of covariance matrix, it will be x i belongs to c 1 x i minus mu 1 multiplied by x i

minus mu 1 transpose.



So, by the concept of covariance matrix only thing we are not dividing it by 1 upon n 1,

similarly S 2 will become x i belongs to c 2 x i minus mu 2 multiplied with x i minus mu 2

transpose. So, what will happen using this? We will be having two matrix, S 1 and S 2. So,

once you are having these two matrix, now define within class scatter matrix as S w equals to

S 1 plus S 2.

(Refer Slide Time: 20:20)

So, now what is S 1 tilde square? That is the scatter after projection for class 1 patterns. So, if

you do a bit calculation what you will find, it is coming out to be v transpose S 1 into v and

similarly you will get S 2 tilde square v transpose S 2 into v. So, from here if I see the

denominator of J v that is S 1 tilde square plus S 2 tilde square, so it is v transpose S 1 plus S

2 into v. And what is S 1 plus S 2? That is within class scatter matrix that is S w.



So, this is the denominator of J v. So, this equals to this one. So, let us say star now define

between the class scatter matrix that is S B between class scatter matrix, then certainly it will

be the difference of two means and then transpose of that product of that.

Now, what this S B measures? S B measure separation between the means of two classes

before projection. So, means of two classes after projection means separation of the means of

two classes after projection is just v transpose mu 1 minus v transpose mu 2 square. This I can

write v transpose mu 1 minus mu 2 mu 1 minus mu 2 transpose into v, then this comes out to

v t plus S B into v.
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So, this is the numerator of J v. So, now what J v is we have to find out v which maximize J v

where J v equals to earlier it was mu 1 minus mu 2 square upon S 1 tilde square plus S 2 tilde

square and this we have reduce is v t S B v upon v transpose S w v.

So, for extremizing this one what we have to do? We have to make d by d v of J v equals to 0

and if you do it, it will give you after certain calculation that S B v minus v transpose S B v

multiplied with S w v upon v transpose S w v equals to 0. Now, see this value what is this? It

is a scalar value and that is your J v means which you need to maximize.

So, let us assume that it is your lambda. So, it will become S B v minus lambda S w v equals

to 0 or S B v equals to S w into lambda v or I can if S w is invertible S w inverse S B v equals

to lambda v. Now, this is a matrix let us say this I am writing M M equals to lambda v.

So, you have to find out v which maximize the lambda. And now what is lambda here? By this

you can see that because v should be a non-zero vector, it is a direction vector of the line. So,

it is the eigen value of m by the definition of eigen values and eigen vectors. So, and what you

have to maximize the lambda, so which eigen value you have to take which is the largest one

because you have to maximize J v and what is J v. J v is your lambda only.

So, you have to maximize lambda. So, you have to take lambda which is the largest means

largest eigen value of m. So, what is v here. So, I can write v is the eigen vector of S W

inverse S B S w inverse S B corresponding to largest or biggest eigen value. So, what you do

samples are with you. You can easily find out capital S W and capital S B because capital S B

will come from the means and capital S w will come from the scatters from the covariance of

two classes. 

So, once you are having capital S W matrix and capital S B matrix, then you can easily find

out S W inverse into S B. So, v is the direction given by the eigen vector of S W inverse S B

corresponding to the largest eigen value. So, this is easily you can calculate.
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However more we can do more manipulation in this that what you are having, you come out S

B v equals to lambda S W into v. So, if S W is full rank that is inverse exist S W inverse S B v

equals to lambda v, but what you are having for any vector x S B x for points in the same

direction as mu 1 minus mu 2.

Why? Because S B x equals to mu 1 minus mu 2 mu 1 minus mu 2 transpose into x and it is

because mu 1 minus mu 2 transpose x will be a some scalar. So, alpha mu 1 minus mu 2. So, S

B x is some scalar times mu 1 minus mu 2. So, they points in the same direction. So, what I

can do? So, from here I can make that in that case v equals to S W inverse into mu 1 minus

mu 2.

So, even though you no need to calculate S B because S W is there. Once you are having S

W, find out the inverse and the direction of v is given by the product of S W inverse with the



vector mu 1 minus mu 2. If W is not full rank, then you can make use of some kind of pseudo

inverse in this case. So, let us see an example of this.

(Refer Slide Time: 29:15)

So, suppose I am having this data. We are having total 11 points. Class I has 5 samples. So, c

1 these 5 1 2 2 3 3 3.

So, these are denoted by these blue points. Similarly class 2 has 6 points given by these

coordinates. So, this is a two-dimensional data and I want to project this data onto a line in

1D, so that it should remain h linearly separable. Well separable the base separability should be

guaranteed. So, what you do? First you arrange these data points into two separate matrices.

So, here I am having five samples.



So, it will be a 5 by 2 matrix and it will be a 6 by 2 matrix. Let us say these 4 class 1, I am

saying c 1, for this I am saying c 2. If you see in a PCA, PCA project on to this line and you

can see here the data is not well separated.
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So, now you what you do? You are having c 1 which is a 5 by 2 matrix. So, I am continuing

with the same example and c 2 which is again a 6 by 2 matrix. So, it will be having 1 2 and

then 5 5.

So, blue points and it is 1 0, 6 5 means red points. Now you compute mu 1. Mu 1 is the mean

of this class c 1 patterns. So, it comes out to be 3 which is the mean average of this column

and average of second column 3.6. Similarly I calculate mu 2 mu 2 comes out to be 3.3 which

is the average of this column and then 2 2 and 2.



Now, calculate S 1. So, S 1 is the covariance matrix four times covariance matrix of c 1 and

this comes out to be 1 10 8 8 and 7.2. Similarly S 2 will be 5 times covariance of C 2. So,

from these two columns you can easily find out covariance of c 2 and this comes out to be

17.3 17.3 16 16 16.

So, here S W within class scatter matrix is S 1 plus S 2 and this S 1 plus S 2 becomes 27.3 24

24 and 23.2. Now S W inverse becomes 0.39 minus 0.41 minus 0.41 0.47. Now, from the

previous derivation what is the line v which maximize J v that is S W inverse into mu 1 minus

mu 2 and once you calculate it, it comes out to be minus 0.79 and 0.89. So, this is the line and

then you can project all the points there.

(Refer Slide Time: 33:10)

So, I have given here. So, this is the line and once you project these point here, this will be the

projection and this is the best possible linear separable data after projection on to 1D. So, this



is about linear discriminant analysis. Now, you can generalize into multiple classes because this

derivation we have made using only two classes.
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So, in case of c classes can reduce to dimension to up to 1 2 3 up to c minus one-dimension.

So, if you are having like 10 classes, you can reduce the dimension up to 9. Project sample x i

to a linear sub space y i. So, now it will be the subspace of x i and this projection will be given

by the projection matrix v transpose.

So, for example here I am talking about three-dimension. So, you are projecting here in w 1,

they are well separated in r 2 while here it is not well separated. So, I have to find out this

projection matrix and this you can easily find out the using the concept of linear discriminant

analysis.
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So, these are the references for this lecture. Some of the slides I have taken from this course

notes.

Thank you very much. 


