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Hello friends, so welcome to module 17 of this course Essential Mathematics for Machine

Learning. This particular module is in continuation of the last module in which we have

introduced to you about Principal Component Analysis. And then we have seen that the

principal component directions are nothing just the direction given by the eigenvectors of the

covariance matrix which we have taken from the data.

Then we have to reduce the dimension of a data from let us say n to k where k is less than n;

then what we need to do? We will take first k largest eigenvalues of the covariance matrix and

then their corresponding eigenvectors will expand the sub space by projecting the n

dimensional data on to that k dimensional sub space we will reduce your data with dimension

k. At the same time it will preserve as much randomness or variance as possible in your data. 

So, let us derive it first mathematically. 
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So, it is a bit mathematical, but very interesting. So, the objective of PCA is to perform

dimensionality reduction while preserving as much of the randomness in the high dimensional

space as possible. 

So, for this let X be a n dimensional vector such that; X equal to i equals to 1 to n y i, phi i;

where phi 1, phi 2, phi n, forms an orthonormal basis of n dimensional vector space in which X

lie and the coordinates or the waiting coefficients y i are given as; so y i will become your

inner product of X with phi i we have seen it earlier. 

In case of r n it will become the dot product for all i equals to 1, 2, n. So, this is the

representation of a vector X in n dimensional space. So, what we are taking a an orthonormal



basis. So, phi 1, phi 2, phi n, are basis vectors and we are taking the linear combination of

these basis vectors to represent the X. 

Now, suppose I want to represent X with fewer basis vectors that is say; m where m is less

than n. So, how we can do this? So, we can do this by replacing the coordinates y m plus 1, y

m plus 2, up to y n with some of preselected constants b i as. 
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So, X m means I am representing the same X, but in lower dimensional space having

dimension m. It will become i equals to 1 to m y i phi i plus i equal to m plus 1 to n b i phi i. 

Now, the representation error is so let me denote this representation error by del X m then this

del X m becomes X minus X k means this is the X represented in the higher dimensional space

and this is in lower dimensional space that is with m basis element. 



And if you use this equation let us say equation 2 and this is my equation 1; so by 1 and 2.

This will become i equals to m plus 1 to n y i minus b i phi i; because first term will be cancel

with first m basis elements. 

Now, we can measure this representation error by mean square of the magnitude of the

difference that is delta X. That is I am defining this error is E delta X square that is the means

square of the magnitude of X and this will become E times summation from m plus 1 to n and

summation on i and square of this. 

So, it will become E of m plus 1 to n y i minus b i and then phi i since square is there so I will

write m plus 1 to n y i minus b i phi i. And this will become E times if I take this summation

together i m plus 1 to n and j equals to m plus 1 to n. And then what I am having y i minus b i,

y j minus b j phi i transpose phi j. So, I have open this summation and I got this one.

Now phi 1 phi 2 phi 3 all are orthonormal basis; so when i not equals to j this dot product of

this two basis elements will be 0. Otherwise if with the same if both are equal i equals to j it

will become 1. 
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So, in that way what we can have we can write the mean square error of the representation

error equals to i equals to m plus 1 to n and expectation of y i minus b i square. In PCA what

we need to do?

We need to find out b i as well as phi i which minimize this particular error because it is the

representation error and we want to preserve as much as information in lower dimensional

space. So, what we need to do? We have to minimize the representation error. 

So, now first find b i. So, for finding b i i will be having del E upon del b i equals to 0 and this

will give me minus 2 times E of y i minus b i equals to 0; this means b i equals to E times y i. 



So, now substitute this value of b i here. So, what I will be having; E of delta X square equals

2 summation over i from m plus 1 to n E of y i minus E of y i and then square of this and

where y i is given by X transpose phi i.

So, substitute this value here so then I will be having E of delta X square equals to summation

i equals to m plus 1 to n and then I am putting this value here. So, E of X T phi i minus E of X

T phi i and square of this becomes summation phi i transpose E times X minus E X X minus E

X transpose and then phi i. 

Now, if you see carefully; what is this? It is the data covariance matrix as per the definition of

covariance matrix. So, it is the data co covariance matrix. So, what I can write. 
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The mean square of the representation error equals to i equals to m plus 1 to n phi i transpose

sigma X sigma X is the data covariance matrix phi i. So, let me give question number 3. 

Now, what I have to find out phi i. So, to find phi i what I need to do del E delta X square

upon del phi i equals to 0 and subject to phi i transpose into phi i equals to 1. Since I am

having this condition also I have to minimize this. 

I have to find out phi i means i have to minimize and for over phi i E del X square subject to

phi i transpose into phi i equals to 1; since they are the orthonormal basis. So, by using

Lagrange multiplier what I can write I can include this condition here. 

So, minimize phi i transpose covariance matrix into phi i plus i equals to m plus 1 to n lambda i

times 1 minus phi i transpose into phi i. And then if this is J phi i then to minimize it del J phi i

over del phi i equals to 0. And this will give me sigma X phi i equals to lambda i phi i; so, 4. 

So, now this value of sigma X phi i substitute here. So, basically what is phi i and lambda i

first? They are the eigenvalues; so here phi i and lambda i are the eigenpair of the covariance

matrix. 
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Now, from 3 and 4; we have E delta X square equals to summation i equals to m plus 1 to n

and then phi i transpose into lambda i phi i and this becomes i equals to m plus 1 to n lambda i

because phi i transpose into phi i will become 1 and for when i not equals to there they will

become 0. 

So, now mean square of the representation error is sum of the eigenvalues. So, what I need to

do here; so in order to minimize the representation error which is mean square lambda is need

to be smallest eigenvalues; means what I need to do? 

I am having n eigenvalues out of n i have to choose n minus m minus 1 eigenvalues and sum of

those would be the minimum. So, what those n minus m minus 1 eigenvalue I will choose; I

will choose the smallest one and I will ignore them. And hence to minimize the representation

error or preserving the maximum variance maximum randomness in my data after projecting



into lower dimensional space I have to select only eigenvectors corresponding to larger

eigenvalues; so this is the meaning of this 

So, means what we conclude from this derivation; therefore, in PCA we choose m

eigenvectors corresponding to the m largest eigenvalues lambda i of the covariance matrix

sigma X as the principal directions. 

So, this is the prove; why we are taking principal directions or principal components in the

direction of eigenvectors corresponding to largest eigenvalues of the covariance matrix. 
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Now, one more important thing what is the relation of PCA with SVD. So, PCA and SVD; so

let the data matrix be; C of size n by p. So, means I am having n number of samples and each

one is having p direction. So, my data original dimension is p. 



Then the principal directions and therefore, components are coming from the eigenvectors of

the covariance matrix. So, sigma C and that is 1 upon n minus 1. So, sometimes we can write

1 upon n also, but in variate generally we write 1 less; C transpose into C; which is a p by p

matrix. 

Now, if the SVD of C is given as C equals to us V transpose then the covariance matrix is 1

upon n minus 1 C transpose into C. So, 1 upon n minus 1 and then C transpose is U S V

transpose transpose into U S V transpose. 

And this comes out to be 1 upon n minus 1. So, this will become V S U T into U S V T so V

S square and V T. So, since this covariance matrix is a symmetric matrix and V is an

orthogonal matrix. So, what I am having now this is orthogonal diagonalization of sigma. 

So, what are the eigenvectors of sigma? The columns of V are the eigenvectors of sigma. And

what are the eigenvectors of sigma? They are the principal directions they are giving you the

principal components. Therefore, if the SVD of the data matrix is C equals to U S V

transpose, then columns of V give the principal direction. 

And then if you want to project then it will become X V and X V will be U S; so not X, C C V

sorry C V, U S, V T V U S gives the principal components. Furthermore; how much

information I have preserve; that you can see from here. So, this much information we are

discarding.

So, information preserve is if you are coming from n dimensional space to k. So, lambda 1

plus lambda 2 up to lambda k upon lambda 1 plus lambda 2 plus lambda k plus up to lambda n

and all are S Uth value into 100; will give you the percentage of information preserve in your

data ok.



(Refer Slide Time: 27:26)

So, now let us take some example. So, example 1 so compute the principal components for

the following; 2 dimensional data. So, data is X equals to x 1 x 2 and these are points given by

1, 2, 3, 3 3, 5, 5, 4, 5, 6, 6, 5, 8, 7, and then 9, 8. 

So, means what I am having x 1 column x 2 column and then data is; 1, 2, 3, 3, 3, 5, 5, 4, and

so on 9, 8. So, first what I need to do this is my data matrix; so 1, 2, 3, 7, 8, 6, 7, 8. So, it is 8

by 2 matrix this is the matrix C. 

First I have to find out sigma C; that is the covariance matrix that will become 1 upon 7 means

8 minus 1, 7; 8 are the sample point C transpose into C and this comes out to be 6.25, 4.25

4.25 3.5 Now, eigenvalue of this is lambda equals to 0.4081 and 9.3419. So, eigenvector

corresponding to this eigenvalue means 0.4081 is 0.5883 and for second one is 0.8086. 



Similarly, eigenvector for corresponding to this is 0.5883, 0.8086. So, these eigenvectors are

giving you the direction of principal components or principal directions. So, if I want to

reduce this data into one dimension then that one dimension if data is y will become because

this is the larger eigenvalue. So, this will be the principal direction. So, 0.5883 x 1 plus

0.8086, x 2; all these pairs will projected to 1 D that will be our y. 
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So, if you want to see this is the example these are these points; I have plotted in 2 D and this

green one is giving the direction of principal component. While the second one is the another

eigenvector. 



(Refer Slide Time: 30:50)

Another example consider this again two dimensional data x and y. And I am having

something like 2, 3, 4, 5, 6, 7, 8, 9, 10 sample points. First what I am doing; I am shifting the

center of this data to the origin at 0 0. So, what I need to do for these? Means I want zero

mean of the data; so what I need to do? I have to subtract the mean of x from all these entry

and mean of y from all these entry. So, after doing this you are getting this data. 
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So, this is the original data this is the data with zero mean just subtracting from each column

their respective mean. Now from this data what I will do? I will find out the covariance matrix.
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And covariance matrix comes out to be this one. Now I will find out the eigenvalues and

eigenvector of these.
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So, eigenvalues are 0.04908 and 1.2840 similarly eigenvectors are these one. So, this is the

bigger eigenvalue; so this is the direction of principal eigenvector. So, if I want to reduce this

data to 1 D. So, I have to write all the data that is x y given originally as the linear

combination as 0.677 x 1 or x plus 0.735 y. 
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And if I do this you can see this is original data and this is 1 dimensional data; means after

projecting on the principal eigenvector. So, in that way you can reduce the dimension of your

data.

Suppose your data is having a dimension 100 you want to reduce it up to 20; so what you

have to do? You will find out the covariance matrix that will be 100 by 100 matrix. You will

find the eigenvalues of that covariance matrix; so 100 eigenvalues you will select top 20

eigenvalues corresponding eigenvectors. 

So, those will be orthogonal to each other. So, those 20 eigenvectors will give you or will

expand the a 20 dimensional space. And if you project your 100 dimensional data to those 20



dimensional space your data dimension will reduce to 20. So, this is all about principal

component analysis. 
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So, these are the references. In the next lecture we will learn another very useful concept that

is called linear discriminant analysis. So, why we need linear discriminant analysis when we are

having PCA type of thing. 

Thank you very much. 


