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Good morning students. Today, we will study a very interesting kind of a linear programming 

problem which is called the multi-objective optimization problem. As the name indicates, 

here we will consider not one but many objective functions which have to be simultaneously 

minimized or maximized subject to a common set of equations or constraints. These kind of 

problems arise in real life very frequently. 

 

For example, if you want to buy a car, you want to look at the various objectives that should 

be met. For example, you want that the car should be fuel-efficient; you want that the car 

should be of minimum cost and you also want that the car should look aesthetically good. 

Usually, in real life many objectives or multi-objectives are conflicting in nature. That is if 

one is to be minimized, then the other has to be maximized. 

 

So, like this we have to strike a proper balance between all the objective functions that are 

encountered in the problem. Hence, the study of multi-objective optimization problems is of 

practical interest and is very important for us to study. The outline of today's talk is as 

follows. 

(Refer Slide Time: 02:19) 

 



First of all, we will look at some definitions, then we would like to see what are the 

conditions to check if a given point is an efficient solution or not, then we will take a theorem 

and then an example, later we will look at the weighted sum approach which is an approach 

to solve the multi-objective optimization problem and finally some exercises. 
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So, let us define the most general nonlinear multi-objective optimization problem. Suppose, 

we have minimize f1(X), f2(X). …, fp(X). Now all these f’s that is f1(X), f2(X). …, fp(X) in 

general are they could be nonlinear but we will be considering the linear case only and all 

these constraints are subject to the same set of inequalities that is AX=B and X  0. As I said, 

in general these fi’s could be nonlinear but we will be considering only the linear case. 

 

Please note that if some of the objective function let us say fk(X) is of the maximization type, 

then it can be converted to the minimization type by multiplying with the negative sign. So, 

in general we will consider all the objective functions to be minimized. 
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Now if you look at this carefully, these are actually p problems. How? The first problem is 

minimization of f1(X) subject to the same constraints AX=B and X  0. Similarly, the second 

problem is if the value of k is 2 and like this there are actually p problems, where in each of 

the p problems the objective function is different whereas the constraints are the same. Now 

since each of the p problems is the linear programming problem that we have studied, let us 

assume that each of the linear programming problem has a solution and that solution is called 

as Xk0 , where k goes from 1, 2 up to p. So, in general, each of the p problems will have 

different solutions and there will be the points of optimality of the functions fk. 

 

Now let us give a definition. If it happens that the solutions to all these problems is attained at 

the same point as is shown here in this definition, Xk0  is said to be an attainable solution or an 

ideal solution of the original multi-objective optimization problem, if X10 = X20 = … = Xp0 = 

X0. That is to say the point of optimality of all the linear programming problems is attained at 

the same point. Then, we say that that particular point is an attainable solution or an ideal 

solution. In reality, this kind of a situation occurs very rarely but we have to understand the 

theory and that is the reason why we will like to study this. 
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On the other hand, a feasible solution X0 of a multi-objective linear programming problem is 

said to be an efficient solution if there is no other feasible point X such that for one objective 

function, let us say fi(X) we have the condition that fi(X) < fi(X
0), it should be strictly less and 

for all other objectives fj(X)  fj(X
0), j = 1, 2, …, p. Please note that in the first inequality, we 

must have strict inequality whereas in the second equation we may have equality as well as 

an inequality. 

 

So this tells us that in general a multi-objective optimization problem may have different 

kinds of solutions. They could be either ideal solutions or they could be efficient solutions. 
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So, our problem boils down to the fact that we want to check whether a given solution or a 

given point gives us an efficient solution or not. Graphically, this can be visualized with the 



help of this diagram. If you look at the two lines AB and CD, AB represents the objective 

function f2 and similarly this line CD represents the objective function f1. 

Suppose, these two objective functions intersect at the point P and you try to determine a 

cone with a vertex at P and move this cone up and down. Then, if this point P does not have 

any other point of intersection with the region that has been shaded, then it is said to be an 

ideal solution, otherwise it is an efficient solution. We will study this with the help of an 

example. So let P be a feasible point and let the lines through P representing the function f1 

and f2 be CD and AB just as I have explained. Let f1 and f2 decrease in the direction shown 

by the arrows and let region BPC be the set of all points such that if we move from P to Q 

then the value of either f1 or f2 will decrease and the value of the other function will not 

increase. You can look at this diagram again to visualize this. 
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So, if the shaded region has no point, other than the point P, in common with the feasible 

region, then P is the point of efficient solution, otherwise not. 
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Now let us try to visualize what happens if Q is on the line segment PB, so it is on the edge of 

the cone APB. Suppose it is on the edge of this shaded region that is it is on the line segment 

PB. Then, if you move upwards, then f1 decreases but f2 remains constant. 
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The second situation could be that the point Q lies on the line segment PC. The point Q lies 

on the line segment PC. In this situation, f2 decreases whereas f1 remains constant. 
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And the third situation could be that Q is a point which is in the interior of this cone BPC. 

Then, both f1 and f2 will decrease. So what do we conclude? We conclude that there are three 

situations for the point Q, either it lies on one edge PB or it lies on the second edge PC or it 

lies in the interior of the cone and in all these three cases we have seen how either one 

decreases, one objective function decreases whereas the other remains constant but in the 

third case, both f1 and f2 will decrease. 
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So, if the shaded region has no point other than P, in common with the feasible region, then P 

is a point of efficient solution, otherwise not. This region is called an efficiency determining 

cone. This region is called the efficiency determining cone. 
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Next, we will look at a theorem. If X0 is a unique minimal point for any of the objective 

functions, let us say fi(X) in a multi-objective optimization problem, then X0 is an efficient 

solution of the problem. So, that is the basis of the reason why we have the relationship 

between the efficient solutions and the objective functions. However, the converse need not 

be true. How? Let us see with the help of an example. 
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Suppose, we have a simple two variable problem where there are two objectives f1 and f2 and 

the constraints are defined by x1 + 2x2  2, 2x1 – x2  4, x1 + x2  5 and x1 and x2 are > 0. Now 

as you know that, this satisfies the definition of our multi-objective linear programming 

problem because the set of the constraints are the same whereas the objective functions are 

different. Now we will break this example into three cases. 

 



So actually they are three different problems. Let us take the first case; f1 = x1 + x2 and f2 = 

5x1 + 2x2, this will be shown in the blue color. The second case that we will consider is f1 is 

given by – (2x1 + x2) and f2 is given by – (x1 + 2x2), this will be shown in the pink color and 

the third example will be f1 = – (2x1 – x2) and f2 = – (x1 + x2) and this will be shown in the 

green color. 

 

Now let us see what happens if we take these different cases and what will be the kind of 

solutions that we get to this problem. So first thing we need to do is to draw the feasible 

region. 
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And as you can see, the feasible region has been drawn and it is shown by the region ABCD. 

So the coordinates of A are (2, 0); B is (3, 2); C is (0, 5) and D is (0, 1). Now, the first 

example as I said is shown in the blue color. Let us examine it closely. 
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We will tabulate the value of the objective function in each of the three cases. So, in the first 

case f1 and f2 will assume the following values at the four vertices of the feasible region. At 

A, B and C and D, the value of f1 is 2 5 5 1 and the value of f2 is 10 19 10 and 2. Now, if you 

look at this carefully and examine the values of f1, you can see that the optima is attained at 

the point D. Similarly, the optima of f2 is attained at the point D because this is the minimum 

value of f1 as well as f2. Let us now come back to the second case which is shown in the pink 

color. Here, the objective function values are tabulated in this table, it is for A B C D -4 -4 5 

and 1. Similarly, for f2 -2 -5 -5 and -1 and similarly for the third case which is shown in the 

green color, the values are -4 -8 -5 -1 and for f2 are -2 -7 -10 and -2. 

 

You will observe that in each of the three cases, the optima’s are obtained at different points. 

As I mentioned, in the first case the optimum solution of f1 and f2 is attained at the same point 

D. However, in the second case, it is obtained at two different points B as well as C and in the 

third case, it is obtained at B. 
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Now, the minima of f1 and the minimum of f2 is attained at the point D, this is the case 1. 

Hence, D is the ideal solution. According to our definition, all the solutions of f1 and f2 are 

attained at the same point. Each function has a unique minima at the point D. Therefore, this 

is also an efficient point. It is an efficient solution as well as it is an ideal solution. 

 

The efficiency determining cone, when it is placed with its vertex at P has no point common 

with the feasible region except the point D. So D is the efficient solution. It is the ideal 

solution as well as the efficient solution. 
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If this cone is placed at any other point of the feasible region as its vertex, the cone will have 

points other than its vertex common with the feasible region. Hence, D is the only efficient 



point that is it is the unique solution. This example illustrates the case when the ideal 

solution, the attainable solution and efficient solutions are all coinciding. 
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Now, let us look at the way this cone behaves and you can see the point D is obtained at (0, 

1) and the efficiency determining cone, if it is moved along the edge of the feasible region, 

this is what happens. Therefore, this is a point which has the efficient solution and the ideal 

solution. 
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Case number 2, now the unique minima of f1 is obtained at the point B given by (3, 2); so it is 

an attainable solution and it is also an efficient solution. Unique minima of f2 is at the point 

C, which is given by (0, 5), so it is the attainable solution which is also efficient. 
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Now, let us look at the efficiency determining cone. The efficiency determining cone has its 

vertex on the line BC. So as long as the vertex of the cone is anywhere along the line segment 

BC, it has no point other than the vertex, common with the feasible region. Hence, every 

point on the line BC is an efficient point. This problem has no ideal solution. 
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Let us look at the efficiency determining cone here in the second example. That is shown in 

the pink color. All points on the line segment BC, here they are. 
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Next, the case number 3, minimum of f1 and minimum of f2 is attained at the point B (3, 2). 

Hence, B is the ideal solution but it is not the unique minima of f1 because every point on AB 

gives the minimum for f1. Similarly, it is not the unique minimum for f2 as every point on the 

line segment BC makes f2 minimum. That is to say in both the objectives, it is not the unique 

solution, although it is minimum but it is not the unique solution. 

 

The efficiency determining cone has its vertex at the point B and it has no point other than the 

vertex in common with the feasible region. Hence, the point B given by 3, 2 is an efficient 

solution also. 
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But the points on the line BC or AB are not efficient. If we place the cone with its vertex on 

any of these lines, then the boundary of the cone will coincide with the boundary of the 



feasible region and so there will be points other than the vertex common to the cone as well 

as the feasible region. This example illustrates that an efficient solution is not necessarily a 

unique solution for any of the objective functions. 
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Here, you can see in the third case that is the green case. If you move the cone up and down, 

this is what happens. 
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So, next comes the question how to find the solution of a multi-objective optimization 

problem. For this, we need to determine the efficient solutions because in general you have 

seen it is not always true that we will get an ideal solution in all the cases. Therefore, if all the 

efficient solutions are same, then it is the ideal solution which is very rare. Else any efficient 



solution can be accepted as a solution to the multi-objective problem. The most common 

approach to solve such problems is called the weighted sum approach. 
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Here, consider the objective function formed as the weighted sum of the objectives. So, all 

the objectives are clubbed together like this, 1f1(X) + 2f2(X) + … + pfp(X), where all these 

scalars 1, 2, …, p > 0. Let the minimum value of this function subject to the same 

constraints of the original problem be attained at the point X0. 
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Then, if you look at this  >  , for any feasible X. That is this 

inequality holds for all X. Suppose, if possible X0 is not an efficient solution, so we are going 

to prove it with the help of the contradiction method. Suppose, if X0 is not an efficient 

solution, then there exists a feasible X such that fk(X) < fk(X
0) where k goes to 1, 2 up to p. 



 

And fi(X) < fi(X
0) for at least one k, say k = i. Hence, we have this less than equal to condition 

which contradicts the earlier inequality and therefore X0 is an efficient solution. So, by this 

simple argument we can prove this result.  

Let us take an example to understand the weighted sum approach. 
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The same example as we had taken earlier let us take the case number 2 that is we have f1= – 

(2x1 + x2) and f2= - (x1 + 2x2) and subject to the same constraints x1 + 2x2  2, 2x1 – x2  4, x1 

+ x2  5. Now, let us consider the weighted sum f = 1f1 + 2f2. 
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If we take 1 = 1, 2 = 4,, then we get the function as follows, f = – (2x1 + x2) – 4(x1 + 2x2) = – 

6x1 – 9x2 and the minima is attained at C (0, 5). For this, you need to solve the problem and 



you will see that the minima is attained at C (0, 5), which is an efficient solution of the 

original problem. However, if we take 1 = 4, 2 = 1, then we will get the weighted objective 

function as f = – 9x1 – 6x2 and the minimum is obtained at the point B (3, 2) which is also an 

efficient solution to the original problem. 

 

So, with this exercise we can see that the different weights may produce different solutions 

but every time it will be giving us an efficient solution. If all the weights give rise to the same 

solution, then that problem has the ideal solution but if different combination of the weights 

they give different solutions, then they are the efficient solutions. 
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So, now there is an exercise for you to do. Suppose, you have to maximize f1 = x1 + 2x2 and 

the second objective f2 = 3x1 – x2 and this is subject to the constraints 3x1 + x2  9, x1 + 3x2  

18, x1 – x2  3, x1 + x2  9 and x1 and x2 are both  0. Then, the question for you is as follows. 

You have to find the extreme points of the problem; you have to find the attainable solutions 

of the problem and thirdly find the extreme point efficient solutions and does this problem 

have an ideal solution or not. So, please do this exercise. The answers are given here. 
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In the first the answer is (3, 0), (6, 3), (9/2, 9/2), (9/8, 45/8) and the answer to the second 

question is f1=27/2 at the point (9/2, 9/2) and f2=15 at the point (6, 3) and the third answer is 

(6, 3), (9/2, 9/2) and the fourth answer is no. Thank you. 


