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Lecture – 18 

Primal-Dual Relationship of Solution 

 

Good morning students, till now we have seen some theoretical results which tell us the 

relationship between the objective function value of the primal and the dual. In todays lecture, 

we will try to find out what is the relationship between the solutions of the primal and the dual. 

So the title of todays lecture is relationship between the solution of the primal and the dual. 
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Today’s outline is as follows; first we will relook at the simplex multipliers then we will define 

primal feasible basis then we will define dual feasible basis. Next, we will look at an example of 

primal-dual and we will try to solve the primal-dual and at the end we will see what is the 

relationship between their solutions and finally an exercise. 
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Now you have studied the simplex multipliers when we studied the revised simplex method. So I 

wish you to recall what is the meaning of the simplex multipliers, how the values of the simplex 

multipliers are obtained at each iteration and even at the final table, you can read the simplex 

multipliers from the initial table. Now these simplex multipliers will be of very good use as far as 

the solutions of the primal and the dual are concerned and that is what we are going to see.  

 

So let us look at the simplex multipliers from the theoretical angle first of all. Now suppose x1, 

x2, …, xm are the basic variables corresponding to a certain basis of the equations AX=B as you 

know, basically we are interested in the solutions of AX=B and as you know that the canonical 

form gives you the basis that we are interested in. So in the matrix notation, this solution x1, x2, 

…, xm  can be represented like this. First we have the matrix a11, a12….,a1m similarly 

a21,a22,….a2m and am1,am2…,amm and this is to be multiplied by x1, x2, …, xm. Now this is a matrix 

mxm matrix and on the right hand side we have b1-a1, m+1x m+1 and –a1mx1m. So basically what we 

have done is we have put the matrix on the left hand side is the matrix amm that is the co-

efficients corresponding to the variables x1, x2, …, xm  because they are the basis.  And the rest of 

the things we have taken on the right hand side, so right hand side consists of these expressions 

that are shown on the right hand side. 
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That means that the value of X = A-1B, so we can take this A-1  on the other side and we will get 

the solution X. Again in matrix notation we can write it as follows, x1, x2, …, xm  =  1 -

1,m+1xm+1 and so on. Now the bar has been written because when you are going to take the 

inverse and multiply it then the value will be changed, so that is a reason why you need to put a 

bar, this is not the same values as the previous equation. When you solve it will give you this 

expression x1+ 1,m+1xm+1 + 1,nxn = 1  and like this the other equations. So whatever has been 

got at the left-hand side is now written in terms of equal to the right hand side of 1 , 2 etc. 
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Now what is this mean, this canonical form of the equations with respect to the basis formed by 

the variables x1, x2, …, xm is feasible provided the right-hand side that is the i they are > 0 for all 

values of i=1,2 up to m. You know that in order to make it feasible, we need the right-hand side 

> 0. Now using the canonical form, we can eliminate the basic variables from the objective 

function like this. We get   

                                                      

where i goes to 1,2,m,  j=m+1 to n. So the co-efficients or the terms corresponding to the basic 

variables are separated out and the terms corresponding to the non-basic variables are separate 

out and obviously their coefficients will also be different and as this now we have seen the 

values of the ci’s will be like this the j =  and this holds for all j=m+1 to n and the 

j =0 for j equal to 1 to m. So, the entries in the deviation rows as you know corresponding to the 

basic variables are 0 and corresponding to the non-basic variables are non zero and that is how 

they are obtained. Now these are nothing but the relative cost coefficients or nothing but the 

entries in the deviation row as we have seen till now that when you do the simplex calculations at 

each iteration you have the deviation rows. 
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Now it is possible to get it for any basic variable for any basis directly from the original 

equations as follows, let us suppose we have the problem minimize  ,we will call 



this equation as star and this is subject to the conditions , i goes to 1 to m and this 

equation we will call as double star, so this is nothing but the linear programming problem in the 

standard form. Now let x1, x2,…. xm, 0, 0, 0 be a BFS, it means that we have separated out x1, x2, 

…., xm separately and 0,0,0 because totally there are n decision variables but we have separated 

out the first m and the remaining are 0. Now our problem is to express f(X) that is the objective 

function in terms of the nonbasic variables, what are the nonbasic variables? xm+1 and so on up to 

xn. Eliminate the basic variables x1,x2,…,xm from star with the help of double star.  

So this you can do using this equality constraints you can actually eliminate the basic variables 

x1,x2,….,xm using this equations the ax=b and put them into the objective function. Then you can 

multiply each of the equations double star that is the equality constraints by the constants 1, 2, 

…, m respectively. Add them to the star equation and what are these 1, 2, …, m they are 

nothing but the simplex multipliers so this is what you will get. 
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This equation on the top tells us when you do this operations on the equations, you will get these 

1, 2, …, m like this. Now it is our freedom to choose 1, 2, …, m in such a way that the 

coefficients of x1,x2,xm they vanish. That is each of the expressions  , j=1,2 up 

to m, then , j goes to 1,2 up to m where these coefficients are as 

before defined as j  = , j=m+1 to n.  

 

Now these are nothing but m equations in the unknowns πi is and that is how you can solve them.  



Now the same thing can be written in the matrix notation like this that is A0= –C0, where  is 

the vector of the simplex multipliers and  = –[A0]
-1C0 = –[A0

-1]C0 and therefore you can get 

 = –C0 [A0
-1], so you have got the matrix multiplier vector.  

The vector  is as before the simplex multiplier vector and its components are called the simplex 

multipliers, so basically we can solve the equations of the LP and use those equations to be 

substituted in the objective function so that we can get the conditions satisfied and we can get the 

simplex multipliers. 

 

(Refer Slide Time: 14:20) 

 

Now the rule for obtaining A0
-1 that is the most important part of how to get A0

-1, so we will 

understand the methodology for finding out A0
-1 with the help of this example, let us suppose we 

are given the problem at maximization of f(X)= -4x1 – 5x2 subject to 2x1 +   x2  6, x1 + 2x2  5, 

x1 +   x2  , x1 + 4x2  2 and x1 and x2 are both  0.  
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Now as we have done in the previous results, we will be adding the slack the surplus and the 

artificial variables and we will apply the phase 1 of the Two phase method. So we get the 

problem as minimization of g(X) = x7 + x8 why because x7 and x8 are the artificial variables and 

as you know that in the two-phase method we have to set aside the original objective function 

and use the temporary objective function as the sum of the artificial variables. So here x7 and x8 

are the artificial variables and we get this equation 2x1 + x2 + x3 = 6, second constraint is    x1 + 

2x2       + x4 = 5, third one is x1 + x2  – x5  + x7  = 1 and the last equation is x1 + 4x2 – x6  + x8 = 2, 

as you know x3 and x4 are the slack variables, and x5 and x6 are the surplus variable, and x7 and 

x8 are the artificial variables. Of course, all of them have to be  0. Now we find that the basic 

variables of this canonical form is x3 , x4 , x7 and x8, so these are the basic variables. 
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Now from the last two constraints, we can get x7 and x8, which are nothing but the artificial 

variables,  x7 we can get =1 – x1 – x2 + x5 and similarly x8 = 2 – x1 – 4x2 + x6 , so we have got 

hold of the last two constraints because in the last two constraints only we had the artificial 

variables. So what we have done is we have kept the artificial variables on the left hand side and 

taken the rest of the things on the right hand side.  Now we will substitute all this in the 

temporary objective function g(X), so as to express g(X) in terms of the non-basic variables, 

what are the nonbasic variables? x1, x2, x5 and x6, so what we have got the temporary objective 

function g(X) was nothing but x7 + x8 and in terms of x7 using this constraints that we have got, 

we will substitute the value of x7 and x8 and we get the following 3 – 2x1 – 5x2 + x5 + x6.  
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Now the initial table looks like this, that is we have the basis in the first column then we have the 

entries corresponding to x1, x2, x3, x4, x5, x6, x7 and x8 and then finally the right hand side. So all 

these entries have been taken from the given equations into the initial table, you are all familiar 

with this method by which we can write all these entries into the initial table. Also we can solve 

the problem and look at the entries in the final table.  

In the final table again, we have the basis in the first column and similarly the entries 

corresponding to the variables x1, x2, x8 in the remaining columns, you will note that the last the 

entries of x7 and x8 have not been entered these are blank. So in the final table, why are the 

entries in the column x7 and x8 not been written? can you think of the reason. Yes, the reason is 

that since they have disappeared from the basis that means that they are 0. So, we are not 

interested in the artificial variables and hence all the entries corresponding to x7 and x8 have to 

be removed. Because unnecessarily they are creating computations which are not required. So 

looking at this initial and the final table what we see we see that the basis of the initial table is 

the x3, x4, x7 and x8 whereas in the final table the basis is given as x3, x4, x1 and x2, so this is our 

basis of the initial table and the basis of the final table. 
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Now the problem is to find out A0
-1 where A0 is the matrix of the coefficient of these variables 

that are the basis that is x3,  x4, x1 and  x2, in the initial table and what is that matrix? that matrix 

A0 is 2 1 1 1, 1 2 1 4, 1 0 0 0, 0 1 0 0; as you know that this matrix is called the A0 matrix and we 

are interested in finding out its inverse. So A0
-1, we will operate this A0

-1  on the initial matrix of 

the coefficients, so as to produce the final matrix of the coefficients. 
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As you know, so this is what we are going to do we are going to operate A0
-1  on the initial matrix 

that we got and we are going to get basically you do not need to do it on all the columns of the 

given matrix. You can just take only the sub matrix of the last 4 columns and this you can do just 

to avoid the unnecessary calculations so we are going to apply A0
-1  on 1 0 0 0, 0 1 0 0, 0 0 -1 0, 0 



0 0 -1 and this will be equal to 1 0 0 0, 0 1 0 0, 7/3 2/3 -4/3 1/3 and the last column is -1/3 1/3 1/3 

and -1/3, so basically we are applying this operator A0
-1  on the entire equation on the left hand 

side as well as on the right hand side. 
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Now since the inverse of a diagonal matrix with diagonal entries either 1 or -1 is the matrix itself 

therefore we can get A0
-1  on the left hand side and this is = the matrix 1 0 0 0, 0 1 0 0, 7/3 2/3 -

4/3 1/3, -1/3 1/3 1/3 -1/3 multiplied by this matrix 1 0 0 0, 0 1 0 0, 0 0 -1 0, 0 0 0 -1 and when 

you multiply it you will get A0
-1  and what is our A0

-1 , it is the matrix that we have got as follows 

1 0 0 0, 0 1 0 0,-7/3 -2/3 4/3 and -1/3, 1/3 -1/3 and 1/3. 

 

So that is how we have got the A0
-1 which we want. And what are the simplex multipliers? 
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Simplex multipliers are nothing but [1 2 3 4 ] which is = [0 0 -4 -5] A0
-1. Now what is this [0 

0 -4 -5], this is nothing but the coefficients of the objective function of the basis corresponding to 

this stage, so if you look at the objective function it was the basis that is x3, x4, x1 and x2. So x1 

and x2 are the basic variables and the coefficients corresponding to x3 and x4 are 0. The 

coefficients corresponding to x1 and x2 are -4 and -5. Please be aware, that you cannot change the 

order of x3, x4, x1 and x2; you have to leave it as it is in the final table, what I am trying to say is, 

you cannot make it x1, x2, x3, x4 you have to leave it as x3, x4, x1, x2, so you are not allowed to 

change the order. So we have got this simplex multiplies and when you multiply this row vector 

with this matrix. You get the final simplex multipliers as 0 0 -11/3 and -1/3 so these are nothing 

but the simplex multipliers. 
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Now we will look at some definitions, first of all if we have the primal in the form as follows, 

minimize Z =CX subject to AX=b, X  0 and let us suppose that A is given by the columns P1, 

P2, ….. Pn and B is a basis for A and XB is the basic variables corresponding to the basis B. So it 

is important that you have to maintain the sequence that is appearing in the basis, so that 

sequence has to be followed that is why we are writing it in this form A = [ P1, P2, ….. Pn].  
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Now we define the primal feasible basis as follows, basis B is called primal feasible basis if and 

only if it is given by B– 1b  0. XB = B– 1b , XN = 0, so XN stands for the variables corresponding 



to the non-basic entries and the objective function value that is Z = cBB– 1b. That is the cost 

coefficients corresponding to the basic variables in the objective function B– 1b, the primal 

feasible basis is optimum when j = cj -  Pj  0, so j are nothing but the deviation entries and 

they have to be  0 for optimality where of course  are nothing but the simplex multipliers, so  

= cB B –1 these are the simplex multipliers. 
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The dual constraint YA  C can be written as YPj  cj  and that is cj – YPj  0 for j = 1, 2, ….. n, 

therefore by checking the optimality conditions is the same as verifying whether the simplex 

multipliers satisfy the dual constraints or not. 
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Thus, if the primal feasible basis B is also an optimum basis to the primal, then the simplex 

multipliers that is  = cB B –1 satisfy the conditions cj -  Pj  0, for j = 1, 2, ….. n. Now  is 

feasible to the dual problem the simplex multipliers. So the  is the simplex multipliers they are 

feasible to the dual problem. Now the value of the dual objective function that is W = b which 

is nothing but cBB– 1b which is the primal objective.  

Hence by the duality theorem  is optimum to the dual problem. So therefore what does it mean 

that using the duality theorem we have shown that  is optimum to the dual problem. 
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Now let us take an example, suppose we have the primal and the dual given as follows, that is 

the primal is maximization of f = 3x1 + 5x2 subject to x1 + 2x2 < 20,  x1 + x2 < 15  and x1 and x2 

are > 0. Also we have the corresponding dual as w = 20y1 +15y2 subject to y1 + y2 > 3 and 2y1 + 

y2 > 5, so just a two variable problem and it is corresponding dual. 
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Let us try to solve both the primal and the dual with the help of the graphical method this is what 

is the solution of the primal. The shaded region shows the feasible domain and the optimum of 

the primal lies at the point B, so B is the point of optimum that is (10,5) and its objective 

function value is 55. You know how to solve given LP with the help of the graphical method. 

Next let us look at the solution of the dual this is the solution of the dual. 

As you can see that the feasible region is unbounded but because the objective function of the 

dual is minimization. So the minimum occurs at the point B which is nothing but (2, 1) and its 

objective function value is 55. 

 

 So looking at these graphical solutions we know that the solution of the primal and we know the 

solution of the dual and we know that their objective function values is same 55. 

 

Now let us solve this primal with the help of the simplex method and we will try to observe the 

relationship that is what is the relationship? the relationship is that the simplex multipliers are 

nothing but the solution of the dual and that is the whole theme of todays lecture, that is the 



simplex multipliers of the primal are the solution of the dual. So we know that the solution of the 

primal is (10, 5) and the solution of the dual is (2, 1). Let us see how this is shown in the simplex 

calculations. 
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Now we are going to solve this primal with the help of the simplex method, therefore the given 

problem is maximization of 3x1 + 5x2 subject to x1 + 2x2 < 20 and x1 +   x2 < 15, so in order to 

solve it with the simplex method what we need to do is, we need to add two variables which are 

nothing but the slack variables. So x3 and x4 are the slack variables.  

We should have x1 + 2x2 + x3 = 20 this is not less than this is =, then x1 +   x2  + x4  = 15 because 

we have added the slack variables x3 and x4. 

(Refer Slide Time: 38:26) 



 

Now let us look at this simplex table so what you find? basically we have three iterations. In the 

first iteration, we just have the entries of the simplex problem into the table. x3 and x4 is the basis 

as you have seen and the entries are reported in the columns x1, x2, x3, x4 and the right-hand side 

is shown and in the last column I have shown the simplex multipliers at that particular iteration. 

So in the first iteration, you just have the basis. 

The coefficients corresponding to the basis in the objective function. So (0, 0) multiplied by (1 0; 

0 1) and the simplex multipliers come out to be (0 0). In the second iteration, now the basis has 

changed and the coefficients corresponding to the basis are (5, 0) and if you look at the last 

column in the last column (5, 0) has to be multiplied by this matrix that is (1/2 -1/2; 0 1). 

Obviously you know how to find out the pivot and perform the next iteration so I am not talking 

about that. At the moment, I am just talking about the simplex multipliers and at each iteration 

you want to look at the behaviour of the simplex multipliers, so the last column is showing the 

simplex multipliers. Next in the third iteration, we find that the coefficients of the basis in the 

objective function are (5, 3) and this (5, 3) is multiplied by the matrix (1 -1;-1 2) and the simplex 

multipliers come out to be (2, 1).  

 

So looking at these entire calculations of this problem right from the beginning to the end at 

iteration by iteration, you can see that you do not need to solve the dual because you can read the 

values of the dual from the simplex table itself that is the values of the simplex multipliers shown 

in the last column and the final iteration are nothing but the solution to the dual, so (2, 1) is the 



solution to the dual, that is what is written in the last line. The solution of the primal is the basis 

corresponding to the right hand side and what is that, that is nothing but x1=10 and x2=5; so 

(10,5) is the solution of the primal with the objective function equal to 55. If you look at the 

simplex multipliers shown in the last column, then you can see that the solution of the dual is 

nothing but y1=2 and y2=1 that is (2, 1). This is the solution of the dual of course its objective 

function value is 55. So that is the beauty of the primal and the dual relationship that when you 

have the primal you do not need to solve the dual, you just solve the primal and at the end in the 

last iteration if you obtain its simplex multipliers those simplex multipliers are nothing but the 

solution of the dual. Of course their objective function values will be same, as we have seen 

because of the weak duality theorem.  

 

So I hope everybody is now familiar with the way in which you have obtained the solution of the 

dual from the solution of the primal. So here is an exercise for you, write the dual of the 

following LPP and solve the primal problem with the simplex method and obtain the solution of 

the dual from the primal calculations itself, so you just have to read the solution of the dual from 

the primal problem itself.  

So the problem is minimization of – 3x1 – 4x2 subject to 7x1 - 2x2 > 4, –3x1 + x2 < 3, x1 and x2 > 

0. So I hope everybody has understood the question what to do? you have to solve it with the 

help of the simplex method and without solving the dual, read the solution of the dual from the 

simplex calculations. Thank you. 


