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Lattices 11
Hello friends, welcome to my lecture on Lattices. This is second lecture on lattices. Let us
prove some properties of lattices. The theorem, this theorem we have proved in the last

lecture.
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Properties of lattices

Theorem If L be a lattice, then for every a and b in L.
(@)avb=bifandonlyifa< b.
(byanb=aifandonlyifa<b
(c)anb=aifandonlyifavb=>b

If L be a lattice, then for every aand bin L, a V b =b if and only if a precedes b. a Ab = a if
and only if a precedes b. a A b =a if and only if a V b = b. This we had proved in the last

lecture.
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Now let us go to the second theorem. If L be a lattice, then for every a, b, ¢ belonging to L a

Va=a,aA a=a. These are idempotency laws. Thena Vb =b VvV a,aAb=>b A a, these are
commutativity laws. Thena V (bVc)=(aVb)VcandaA (b Ac)=(aAb)Ac, these are
associativity laws. And then we have the absorption laws. SoaV (aAb)=aanda A (aVb)=

a. These are absorption laws.

Let us prove these properties of a lattice. So let us say, first (a) part. a V a. By definition a V a
= least upper bound of {a, a}, Ok. So this is least upper bound of {a} which is equal to a, Ok.
So a VvV a=a. Similarly a A a = greatest lower bound of {a, a}. Greatest lower bound of {a}, is

= a, Ok. Now let us prove, so this is part (b). Let us do 2(a) part. SoaVb=>b V a, Ok.

So a V b = least upper bound of {a, b}. Least upper bound of a comma b is same as least
upper bound of {b, a}. Ok so we have b V a, Ok. Similarly a A b = greatest lower bound of{ a,
b} which is = greatest lower bound of {b, a}. So we have b A a, Ok. So these two are

commutativity laws, Ok and these two are, the first two are idempotency laws.

Now let us show 3(a) part, Ok so 3(a) part. We have to prove thata vV (bV c)=(aVDb) Ve,
Ok. So a V (b V c¢)=least upper bound of a and b V ¢, Ok.

So since it is least upper bound of a and b V ¢, so a precedes, a precedes, a V (b V c), Ok. And

similarly

bVcprecedesaV (bVe).oooooviininni, (1)



Now b V c is least upper bound of b and ¢, Ok. So b precedes b V ¢ and
cprecedesS bV Covvvniiiiiiiiii (2)

Ok. So let us call this as equation number (1), this as equation number (2), Ok. Then ¢
precedes b V cand b V ¢ precedes a V (b V ¢). So by antisymmetry we have c precedes b V c.

b V ¢ precedes a vV (b V c). So c precedes a vV (b V ¢).
Now, now further we have
aprecedesaV (bVe).ooooiiiiiiiiiiiiiiiiiin (3)

Ok and b precedes, so this is this equation and this equation, Ok. Let us consider now a
precedes a Vb V c, Ok and b precedes b V cand b V ¢ precedes a vV (b V ¢), Ok. b precedes b V

c.b Vcprecedes aV (b V c). So again by antisymmetry this implies
bprecedesaV (bVe)ooviiiiiiiiiiiiiinn., 4)

Now let us call them as equations (3) and (4), Ok. So from (3) and (4), we find thata vV (b V
¢) is an upper bound of, upper bound of a and b. And therefore a V b, a V b is the least upper

bound of a and b, so a V b precedes a V (b V c), Ok.

Now what do we notice? Let us consider this.

aVbprecedesaV (bVe).ooooiviiiiiiiinnnnn.. (5)
And
cprecedesaV (bVe)ooiiiiiiiiiiiiiiinn, (6)

SoaV (b Vc)is an upper bound of a V b and c. So this is, I can call this as 5 and this as 6. So
from 5 and 6, (a V )b V ¢ precedes a V(b V ¢), Ok. (a V )b V ¢ precedes a V(b V c¢). And

similarly we can show a vV (b V ¢) precedes (a V b) V c.

Then we can use antisymmetry, Ok. (a V b) V ¢ precedes a vV (b V ¢) and (a V b) V ¢ precedes a
V (b V ¢). So by antisymmetry then, antisymmetry (a V b) Vc=a V (b V ¢), Ok. This is how
we establish the 3(a) part. 3(b) part can be similarly proved, Ok. Now let us go to the 4(a)
part, Ok. In the 4(a) part we have to prove absorption law, absorption law. So a V (a A b) = a.

aV (a A b) = a, this is what we have to prove,
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Ok a Vv (a A b) = a, we have to show this. So here we notice that, Ok, alright, Ok. Soa V (a A

b)=1lubofaandaAb,so ais preceded by, a precedes, sorry
aprecedesaV (@aAb)......ooeiiiiiiiiin... (1)

Ok. a precedes a V (a A b). Now let us show that, Ok, now let us show that a V (a A b)
precedes a, Ok.aAb,aAb=glbofaandb, Ok. So a A b precedes a, Ok. Also a precedes a,

Ok. So a is an upper bound of, Ok so a is an upper bound of a A b and a, Ok and therefore,
aV(aAb)precedesa..........ccoeeviinnnnnnn. (2)

Ok. So we have, this is equation 1, and this is equation 2, Ok. So from 1 and 2 by
antisymmetry a V (a A b) = a. Similarly we can prove the other absorption law. a A (a V b) =

a.
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Now let us go to next theorem. Let L precedes be a lattice, then for every a, b, ¢, d belonging

to L a precedes b implies a A ¢ precedes b A ¢, Ok. So let us consider (a A ¢) A( b A ¢) Ok.
What we are going to do is this. In order to prove that a A ¢ precedes b A ¢, we will use the
first theorem here, this theorem, Ok. a A b =b if and only if a precedes b, Ok. Soa Ab=b if
and only if a precedes b, Ok. So we are going to use this theorem. In order to prove that a, a v

¢ precedes b V ¢, we simply have to show that(aVc)V(bVc)=bVec.

Let us consider this. If we show, if we show that (a V ¢) V (b V ¢) =b V c, then using this
result, Ok, then from a V b =b « a precedes b. It will follow that a V ¢ precedes b V ¢, Ok. So
let us prove this, Ok. (a V ¢) V (b V ¢), we can consider, we can write itas (a V ¢) V (c V b),
because of the commutative law, b V ¢ = ¢ V b and by the associative law I can write it as a V

(cVe)vb,Ok. aV(cVec)Vhb.

NowcVe=c,OkcVcequalc. SoaVc Vb, Ok. Right, now a V ¢, we have to consider a V
¢, Ok. ¢ V b, we have a, we have a, we have not made use of this, a this, Ok this implies a V b
=b, Ok So I can write it as...again use associative law, Ok. I can write it as a, Ok I can write
itasaVcVb,cVblcan use commutative law so a V( b V ¢), Ok. Now I can write it as,
using associative law, (a V b) V ¢, Ok. And a V b =b because a precedes b. So b V ¢, Ok. So a
Ve,(ave)V(bVce)=DbVcso this implies that a V ¢ precedes b V ¢. Similarly we can prove

a precedes b implies a A ¢ precedes b A c.
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Now let us prove the distributive inequality. a A b, let us prove a A (b V ¢) succeeds (a A b) V
(a A ¢), Ok. Or we can say; we have to show (a A b) V (a A ¢) precedes a A(b V ¢), Ok. So if
we can show that, if we can prove that a A(b V ¢), is an upper bound of, of aVbanda V c. If
we can prove that a A(b V ¢), is an upper bound ofa Abanda Ac,thenaV,(aAb)V (aAc),
Ok will be, will precede a A( b V ¢), because this is nothing but the least upper bound of a A b
and a A ¢, Ok

Now to show, that means we have to show that a A b precedes a A(b V ¢),, Ok and we have to
show that a A ¢ precedes a Vv, sorry a A( b V c), Ok. So we have to establish this. Now a A b,
we have to show that a A b is, precedes a A b, Ok so we have b precedes b V ¢, Ok. b
precedes b V c. Ok so we can use now this property, this one, this one we have to get, we

have to get A, Ok.

So if a precedes b then a A ¢ precedes b A ¢, Ok. Let us use this property of the last theorem,
Ok. So then a A b precedes a A( b V ¢), Ok by the preceding theorem. Similarly we can say
that, similarly c precedes b V ¢, Ok. So by the preceding theorem a A ¢ precedes a A( b V ¢),,
Ok. Thus we see that a A b precedes a A(b V ¢), and a A ¢ precedes a A( b V ¢),, Ok. Soa A(b
V ¢), is an upper bound for a A b and a A ¢, Ok. And therefore the (a A b) V (a A ¢) which is
the least upper bound of a Abanda A cis<aA (bVc), Ok. So this is what, this is how we

prove this result. A similar argument we can give for the proof of the other one.
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Principle of Duality

We observe that if < is a partial order on any set, then its inverse relation 7 is also
a partial order Alsm.s that the Iub of a and b with
respect to = is the same as the glb with respect to the relation - and vice versa.
Thus, the tormal principle of duality for lattices, says that if we mterchange v with
A and 2 with - in a true statement about lattices, we get another true statement
and corresponding statements are called dual of each other.
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Now let us go to principle of duality. We observe that precedes is a partial order on any set,

Ok then its inverse relation succeeds is also a partial order. This can be easily shown.
Suppose S is a set, Ok and it is a poset with this partial order, Ok, then first property is
reflexive. a precedes a for any a belonging to S, Ok. The second one is antisymmetry. a
precedes b and b precedes a implies a = b, Ok and third one is transitivity, Ok. So a precedes

b and b precedes ¢ implies a precedes c, Ok.

Now let us show that S succeeds is also a poset. Let us prove, Ok. So a precedes a means a
succeeds a, Ok. So first thing is reflexive. a succeeds a for every a belonging to S because a
succeeds a for every a belonging to S, Ok. Second thing antisymmetry, let a succeeds b and b
succeeds a, Ok then we have to prove that a =b. Now a succeeds b means b precedes a and, b

succeeds a means a precedes b, Ok.

So a precedes b and b precedes a, Ok using the antisymmetry, Ok. This implies that a =b. Ok
we can use this result now. This, that S is a poset with this notation, Ok and similarly
transitive. Let us say a precedes b and b precedes c, Ok. Then, no sorry, let a succeed b and b
succeed c. Then b precedes a and ¢ precedes b, Ok. Now we apply the transitive property
here, Ok. So ¢ precedes b and b precedes a implies that ¢ precedes a. Or we can say a

succeeds ¢, Ok.

So let a succeed b and b succeed c, let a succeed b and b succeed ¢ then a succeed c. So this is
true for all a, b, ¢ belonging to S, Ok and therefore if this is a partial order, this one is also a

partial order on S. Now it follows from the definitions that the 1 u b of {a, b} with respect to



this, 1 u b of, it is clear that l u b of {a, b} with respect to this order, precedes is g 1 b of {a, b}
with respect to this order, Ok. So, and vice versa. So thus the former principle of duality for
lattices says that if we interchange, V and A and precedes and succeeds in a true statement
about lattices, we get another true statement. And corresponding statements are called dual of

each other.
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So you can see here, where we have written these, yeah, you can see we have this result, Ok.

We can interchange, Ok V and, in order to write this, we can interchange V and, by A, Ok.
And then we get the corresponding commutative law, commutative law for this one. And
similarly here you can interchange V and A, Ok, here V and A and we get the other absorption
law. So, so we can say that this is dual of this one, Ok this is dual of this one. And this is dual

of this one. So they are dual of each other.
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Now the direct product of two lattices is a lattice. Let us see, let L, and L,. be two lattices,

Ok. Then L, x L,, we define as (X, y) such that x belongs to L, , y belongs to L.

Ok. We will first prove that, let us say (x; ,y;) and (X, ,y,) belong to L, x L,. Then let us
define (X, ,y,) precedes (x, ,y,) if X; precedes X, and Y, precedes Yy, X, precedes X, in L;

and y, precedes y, in L,.

Now although we are using the same notation, but they are not same. In different, in L, and
L, , they mean different, they have different meanings, Ok. So convenience we are using the
same notation. So (X, ,y,) precedes (X, ,y,) if and only if X; precedes X, in L, and Yy,
precedes ¥y, in L,. Let us define order like this, and then we will prove that L, X L, is a poset

with this definition. So we show that L, x L, is a poset, Ok.

So first thing is reflexive, Ok. So we show that, let (X, ,y,), (X, ,y,) precedes (X, ,y,) . First
we have to show this for every (x, ,y,) belonging to L, x L,, Ok.So (x, ,y,) precedes (X, ,y,)
will be true because x; precedes X, in L; and y, precedes y, in L, . So since X;precedes x; in
L, and y, precedes y, in L,, Ok because L, and L, are lattices, it follows that (x, ,y,)

precedes (X, ,y;) whenever (X, ,y;) belongs to L, x L,. So this is reflexive property.

Then we have antisymmetric. So let us assume that (X, ,y,) precedes (x, ,y¥,) and (x, ,Y,)

precedes (X; ,Y;). Then we have to show that (X, ,¥;) = (X, ,Y,) . So (X, ,y;) precedes (x,, V>)



means X, precedes X,, ¥, precedes ¥, . And (X, ,Y,) precedes (X, ,y;) means X, precedes X,
and y, precedes y;,Ok.Now x; precedes X, and X, precedes X;, Ok implies that x,= x,
because L; is a lattice. And similarly y, precedes y, and y, precedes y, implies that y,= y,

because L, is a lattice.

Now let us prove transitive, Ok. So let (x, ,y,) precedes (%, ,Y,) and (X, ,y,) precedes X5, Vs,
Ok. Then x; precedes x,, ¥, precedes ¥, , Ok. X, precedes X,, ¥, precedes y;, Ok. Now L,

is a lattice. So x; precedes X, and x, precedes x;implies that Xx; precedes X;,

Ok. And similarly y, precedes y, and Y, precedes Y, implies that y, precedes y¥;. Now X,
precedes x;and y, precedes y;and therefore (X; ,y,) precedes (X5, y;). Ok and so we have
shown that in L; X L,, if we define order by this, (x, ,¥;) precedes (X, ,y,) if and only if X,
precedes X, in L, and y,precedes y, in L,. Then L, x L, is a poset, Ok. So hence L, x L, is
a poset. Now we shall show that L, x L,is a lattice. So now let us prove that L, x L,is a

lattice , Ok.
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So let (x, ,y;) and (X, ,y,) belong to L; x L,. We shall show that (x; ,y,) V (X, ,y,) = (X; V
Xy, Y1 N Yy, Ok. And (X, ,y) A (X, ,Y,) = (X, A Xy, y; A Y,). Ok. So since L, and L,are
lattices, Ok, X; V X,, belongs to L, , x; A X,, belongsto L, ., Y,V y,belongs to L,and y, A Y,
belongs to L,. And therefore (x, ,y,) (X;,Y) V (X, ,Y,) belongs to L, x Lyand (X, ,y;) A (X, ,

y,) belongsto L, x L,.



So since X, X,, belongs L, X; V X, and X; A X,, , they belong to L,, Ok.

And similarly y,, ¥, belongs to L, . So y; A ¥,, and ¥, A y,belongs to L, , Ok. And this will
then imply that (X, ,y,) V (X, ,y,) belongs to L, % L,. And (X, ,y,) A (X, ,Y,) belongs to L,
x L, . So we just have to prove this, Ok, and this. Ok if we can prove that they are equal, then

L, x L, will be a lattice. Ok so in order to prove this, we know that, first we shall show that (

XY ) V(x,,y,) 5 (x;,¥) V(x,,y,) thisis least upper bound of (x, ,y,) and (x, ,y,) .

So first we shall show that x; V x,, y, V y,is an upper bound of (X, ,y,) V (X, ,Y,) , Ok, (X, ,¥;
) and (X, ,y,) , Ok So x; precedes x; V X,, Ok. And y, precedes y, V y,, Ok. So (x; ,y,)
precedes X; V X, and y, V ¥,, by your definition, Ok, alright. Similarly x, precedes X, Vx 2,y

2 precedes y; V y,, Ok. So (X, ,y,) precedes (X, V X,; Y1V Y>).

Thus what do we notice? (X; V X,; y, V ¥,) is an upper bound for (x, ,y;) and (X, ,y,) . And

hence (x, ,y,) V (X,,y,) precedes (x; V X,; ¥,V ¥,). Ok itis an upper bound for (x; V X,;
v,V y,),itis an upper bound, (x, V x,; y, vV y,) is an upper bound of (x, ,y,) and (x, ,y,) . So
(X, ,Y1) V (X, ,Y,), because (X; ,y,) V (X, ,Y,) is the least upper bound of (X, ,y;) and (X, ,y,
) . So it has to be less than or equal to this, Ok.

Similarly we can prove that (x; V X,, y; V ¥,) precedes (X; ,Y1) V (X, ,Y,) , Ok. And therefore
they are equal. So x;, so hence by antisymmetry(x; ,y;) V (X, ,Y,) =(X; V X,, ¥V ¥,) , Ok so
this is proved, Ok.Similarly we can show then (x; ,y,) A (X, ,Y,) =(X; A X,, Y1 AY,). And
that proves that the least upper bound of (x, ,y,) and (X, ,Y,) is there in L, x L,. And greatest

lower bound (X, ,¥,) and (X, ,y,) is also there in L; x L, . And therefore L, x L,is a lattice.
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Let L and M be two lattices shown in figure below (a) and (b). Then L x Mis the
lattice shown in Fig. (c)
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Now let L and M be two lattices shown in the figure below, (a) and (b), Ok. Then L x M is a
lattice shown in figure (c). You see X;, X,this is the lattice L. And this is the lattice M, y,, .,
Y3 ¥4 Then, then as we have seen (x,, y, (precedes (x,, y,¢if and only if x, precedes x,, y,
precedes y,. So using this definition, Ok, L x M, we can write L x M. See (X;, y, éprecedes (
Xy, ¥y)- (X1, ¥y, precedes (x,, y,,6, Ok and (¢, y, balso precedes (x,, y,é. Ok(xy, y,)
precedes X,, y,because x; precedes X,and y,precedes y,, reflexive property, Ok. So (x;, ¥,
)ies below (X,, y,é, Ok. It precedes (X,, y;). And then (, y,) precedes (X,, ¥,). &, Y1)

precedes (x,, ¥5). And further ( X,, y,) precedes (X,, Y4¢. (X,, y3) precedes & &, Y,). So this is
the figure for L x M.
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Definition
Let L and M be lattices. A mapping f: L - Mis called a
Q Join-homeomorphism if f(x v y) = f(x) v (y)
@ meet-homeomorphism if f(x A y) = f(x) A £(y)
Q order-homeomorphism if x < y = f(x) < f(y) ie. it preserves the partial
order, hold forall x,y € L. = i EEEE

The mapping  is called a homeomorphism if it is both a join and meet
homeomorphism. If ahomeomorphlsrnwmectwe i.e. one one and onto, thenf
is called isomorphism. If there is an isomorphism from L to M, then L and M are
isomorphic. -

Now let us say, let L and M be two lattices. A mapping f from L into M is called a join
homeomorphism if f (x V y) =f (x) V f (y) meet- homeomorphism if f(x A y) = (x) A f (y),
order homeomorphism if x precedes y implies f (x) precedes f(y). Now this precedes is not
the same as the precede here, because this precede is for L and this precede is for M which

can be different.

That is, it preserves the partial order, that is this, order homeomorphism means f will be said
to have order homeomorphism if it preserves the partial order. x precedes y implies f (x)
precedes f(y). And this should hold for all x, y belonging to L. The mapping f is called
homeomorphism if it is both join homeomorphism and meet homeomorphism. If
homeomorphism is bijective, that is one-one, onto then f will be called an isomorphism. And

if there is an isomorphism from L to M then L and M are said to be isomorphic.
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Let L; be the lattice Dg(divisor of 6)={1,2,3,6} and let L, be the lattice (P(S),<)
where S={a, b}. The two lattices are isomorphic.

A (),e) s=H

t.1 4k Ga b
A po)= B, 43,48 2

o~

Now let us look at this. Let L be, L, be the lattice Dg. Dy. is divisor of 6, so we have {1, 2, 3,
6}. Let us draw the Hasse diagram, 1, 2, 6 Ok so 1, 2, 6 and we have 3 here, Ok, so 3 divides
6. So we have 1, 2, 6, 3, Ok. And L, be the lattice P (S). P (S), power set of S and we have
the order relation inclusion, Ok. S ={a, b} so S ={ a, b} here. So P (S) = { ®, {a}, {b}, {a
b}} Ok. We have to show that the two lattices are isomorphic.

So what we do is let us define a function f from Dg. to P( S), Ok as f(1)=®, f(2)=a, f(3) =
b, Ok f( 6)={ a, b}. Ok. Then we can draw a Hasse diagram for this P (S). This is ® here,
and this is {a} this is [b}, and this is {a, b}. Ok so this 1 goes to ® here, Ok, 2 goes to [a}, 3
goes to [b}, and 6 goes to {a, b}, Ok.And clearly f is one-one, onto, Ok, f is one-one, onto so
there exists a bijection f from Dg. to P (S) this L, to L,, Ok.So f'is a map bijection from L;to

L,. Instead of Dy. we should write L,, L, Ok and therefore since there exists a bijection from

L, to L,, the two lattices are isomorphic.
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Let L ={1,2,3,4.6,12}. Now consider the lattices (L, ) and (L. <) where | is the
divisibility relation on L and < is the usual ‘less than or equal to' relation on L. The

lattice (L, [) and (L, <) are not isomorphic. L)~ U:_%_T

J(34Y) = £0) Lat) = FEAFD

J ’ .
(Y Af(w) = e feyerrf )
gj\b-_%wttﬁ,ﬂ 7[

AN SRTY

So now let us say, let L be this set 1, 2, 3, 4, 6, 12. We consider the two lattices, L with
divisibility relation, L with less than or = where (L, |) notation is for divisibility on L and
(L ,<) notation is the usual, less than or = relation on L. We have to show that the two are not
isomorphic. So we have to show that L, in order to show that it is isomorphic we have to
show that it is, the two things we have to show, join homeomorphism, meet homeomorphism
and there is a bijection. So let us show that, meet homeomorphism is not true here, meet

homeomorphism does not exist, Ok.

So let us see. Suppose f is a mapping from (L, |) to (L ,<) then what we will see? Let us
consider f (3 A 4), £ (3 A 4) let us consider, Ok. Then f (3 A 4), fis a mapping from L to L. L
with divisibility and the other one is L with less than or equal to, Ok. So f (3 A 4),a A bin
the case of divisibility is greatest common divisor of a and b, Ok. So greatest common divisor

of 3and 4 is 1. So we have f( 1), Ok.

And right side we have f (3 A 4) = f( 3)A f( 4). Now what is f Q) A f(4) 2 f3)Af(4) =
either f (3) or f (4), Ok because this A here and in this set is less than or equal to. The relation
is less than or =. So f (3) will be less than or equal to f( 4), Ok or f( 4) will be less than or
equal to f(3), Ok in the case of, less than, so less than or equal to, so either f (3) will be less
than or equal to f (4), or f (4) will be less than or equal to f (3). And therefore f (3 A 4) is not
equal to ' (3) A f( 4), Ok. Either it is f (4) or it is f( 3).



So f (1) is not equal to f (3) or f (1) is not equal to f (4) and therefore A, it is not meet
homeomorphism. So (L, | ) with divisibility relation and (L ,<) with less than or equal to,

they are not isomorphic to each other. With that I would like to end this lecture. Thank you

very much for your attention.



