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Hello friends. Welcome to my lecture on application of probability theory to queuing theory

and reliability theory. Queuing theory is the mathematical study of waiting lines or queues.
(Refer Slide Time: 00:46)

A queue or waiting line is found when units that is customers or clients requiring some kind

of service arrive at a service counter or service channel. A simple queueing model is shown in

the following figure. There you can see arrivals, queue is formed and then service is done and

then they depart. So basic characteristics of queueing system are the input or arrival pattern,

the service mechanism or service pattern, the queue discipline, the system capacity.
(Refer Slide Time: 01:14)



Let us discuss all  these characteristics  one by one.  So input or arrival  pattern.  The input

describes the manner in which customers or units arrive and join the queueing system. It is

not possible to observe or detect the actual amount of customers arriving at the queue for

service. Hence, we express the arrival pattern of customers by the probability distribution of

the number of arrivals per unit of time or of the inter arrival time.

Let us consider those queueing systems in which the number of arrivals per unit of time is a

Poisson random variable with mean lambda. We know that in this case, the time between

consecutive arrivals that is the inter arrival time of the Poisson process has an exponential

distribution with mean 1/lambda.
(Refer Slide Time: 02:04)

Now let us discuss the service mechanism. It can be described by a service rate that is the

number of customer serviced in one time period or by the inter service time that is the time

required to complete the service for a customer. Let us consider those queueing systems in



which the number of customers serviced per unit of time has a Poisson distribution with mean

mu or equivalently the inter service time has an exponential distribution with mean 1/mu.
(Refer Slide Time: 02:34)

Now next we consider queue discipline.  In this procedure,  the customers are selected for

service when a queue is formed. The various types of queue disciplines are tabulated in the

following table. Number one FIFO or FCFS. FIFO means First in First Out or First Come

First Served. This is the most commonly used procedure in servicing customers. Number two

LIFO or  LCFS,  Last  in  First  Out  or  Last  Come First  Served.  This  procedure is  used in

inventory systems.

SIRO, SIRO Selection for Service in Random Order. This is not very usual. PIR, Priority in

Selection that is customers are prioritized upon arrival.  This procedure is used in manual

transmission managing systems. If a message is very important, it is transmitted; first it is

given priority over other messages. So it  is  priority  in selection.  Now let  us assume that

service is provided by the FCFS or FIFO procedure. That is on a first come first served basis.
(Refer Slide Time: 03:45)



So the maximum number of customers, system capacity. The maximum number of customers

in the queueing system can be either finite or infinite. In some queueing models, only limited

customers or units  are allowed in the system. Now let  us talk about  transient  and steady

states. A queueing system is said to be in transient state when the operating characteristics of

the system depend on time.

A queueing system is  said to be in steady state when the operating characteristics of the

system are  independent  of  time.  For  example,  if  pn  t  is  the  probability  that  there  are  n

customers in the system at time t. When t>0, finding Pn t is quite a difficult task even for a

simple case. Thus, we are most interested in the steady state analysis of the system that is in

determining Pn t in the long run.

That is as t goes to infinity. Thus, we look for a steady state probabilities that is Pn t goes to

pn, a constant as t goes to infinity.
(Refer Slide Time: 04:54)



Now let us discuss Kendall’s notation of a queueing system. In Kendall’s notation, Kendall

gave this notation in 1951. So queueing system has this form a oblique b oblique c such that

d/e where a is inter arrival distribution, b is service time distribution, c is number of channels

or servers, d is system capacity, e is queue discipline.
(Refer Slide Time: 05:25)

Now a and b usually take one of the following symbols, M for Markovian or Exponential

distribution, G for general distribution and D for fixed or deterministic distribution. The 4

important  queueing systems described in Kendall’s notation are as follows. MM1 infinity

oblique FIFO, MMS infinity oblique FIFO, MM1 k oblique FIFO, MMS k oblique FIFO

okay.

In this lecture, we will be discussing the first queueing system MM1 infinity oblique FIFO.

Next, we define the line length and queue length for a queue.
(Refer Slide Time: 06:11)



So, for a queue, the line length or queue size is defined as the number of customers in the

queuing system. Also, the queue length is defined as the difference between the line length

and  the  number  of  customers  being  served.  That  is  queue  length=line  length-number  of

customers being served.

Now we will be using the following terminology, n is the number of customers units in the

system, N t number of customers in the system at time t, Pn t the probability that there are

exactly n customers at time t that is probability that N t=n. Pn, the steady state probability

that exactly n customers are there in the system. And then, lambda n is the mean arrival rate

okay, mean arrival rate when there are n customers in the system.

Mu n is the mean service rate when there are n customers in the system. Lambda is mean

arrival rate when lambda n is constant for all n, and mu is mean service rate when mu n is

constant for all n.
(Refer Slide Time: 07:18)



Now some more notations are there. Rho is=lambda/mu which is known as utilization factor

or traffic intensity, fs w is the probability density function of waiting time in the system, fq w

is the probability density function of waiting time in the queue, Ls is the expected number of

customers  in  the  system or  the  average  line  length.  The  Lq  is  the  expected  number  of

customers in the queue or the average queue length.

Lw is the expected number of customers in the non-empty queues. Ws is the expected waiting

time of a customer in the system, Wq is the expected waiting time of a customer in the queue.
(Refer Slide Time: 08:05)

Now let us find the differential equations for the transient state probabilities for the Poisson

queue  systems  which  are  also  known  as  birth-death  process  or  immigration-emigration

process. Let N t be the number of customers in the system at time t and pn t be the probability

that there are n customers in the system at time t where n>or=1 that is Pn t=probability that N

t=n.



Then the differential equations satisfied by Pn t are given by Pn dash t that is derivative of Pn

t with respect to t=-lambda n+mu n*Pn t+lambda n-1*pn-1t +mu n+1 Pn+1t where n is>or=1

and when n=0 we have the differential equation P0 dash t=-lambda 0 P0 t+mu 1 P1 t.
(Refer Slide Time: 09:06)

Transient  state  probabilities  for Poisson queue systems.  The solution of these differential

equations, the solution of the two differential equations that we have got number 1 and 2.

Number  1  is  for  n>or=1 and  number  2  is  for  n=0.  So the  solution  of  these  differential

equations yields the transient state probability, Pn t for n>=0 but this is exceedingly difficult

even for simple problems.

So  we  consider  steady  state  probabilities  for  Poisson  queue  systems.  The  steady  state

probabilities  for  Poisson  queue  systems  are  derived  by  assuming  that  Pn  t  goes  to  Pn

independent of ts t tends to infinity. The equations of steady state probabilities Pn can be

obtained by putting Pn dash t=0 because Pn t is now as t tends to infinity is a constant, so

when we take the derivative of Pn t with respect to t, it will be=0.

So Pn dash t=0 and replacing Pn t by Pn in equations 1 and 2 and then we obtain, you can see

here if you put Pn dash t=0 and Pn t=Pn then you get –lambda n+mu n*Pn+lambda n-1*Pn-

1+mu n+1*Pn+1=0 okay. So we have this equation and similarly the other equation, equation

number 2 for n=0 becomes P0 dash t=0 and this is –lambda 0 P0+mu 1 P1 okay of the right

side. So we get –lambda 0 P0+mu 1 P1=0, so we get the second equation.
(Refer Slide Time: 10:59)



From these equations, one can determine the values of Pn in terms of P0 and the value of P0.

Now let us see equations 3 and 4 are called the balance equations this equation 3 and 4 okay

this 3 and this 4 are called balance equations or equilibrium equations of the Poisson queue

systems. Using the principle of mathematical induction, it can be shown that this Pn from this

equation okay using the principle of mathematical induction one can show that Pn=lambda

0*lambda 1*lambda 2 and so on lambda n-1/mu 1 mu 2 mu 3 mu n*P0.

And P0=1/1+sigma n=1 to infinity lambda 0 lambda 1 lambda 2 lambda n-1/mu 1 mu 2 mu 3

and so on mu n.
(Refer Slide Time: 11:59)

Now  let  us  consider  the  model  MM1  infinity  oblique  FIFO  single  server  with  infinite

capacity.  So  here  a  is  m  b  is  also  m  that  means  we  are  considering  exponential  type

distribution number 3, 1 means we are considering single server okay, infinity means the



queue can be infinite okay and FIFO means we are considering the discipline as first in first

out okay, first in first out FIFO okay.

That is the queue discipline we are considering, a is arrival distribution, b is service time

distribution, both we are assuming as that they follow exponential type distribution, c is the

number of channels or servers. So we are considering that the system has one server and d is

the system capacity, system capacity we are taking as infinite.  So we have MM1 infinity

FIFO model okay.

For this model, we make following assumptions. The mean arrival rate is constant that is

lambda n=lambda for all n. Mean service rate is constant that is mu 1=mu for all n. Mean

arrival  rate  is<the  mean  service  rate.  So  that  means  lambda  is<mu  or  we  can  say

rho=lambda/mu is<1, rho is the traffic intensity, so the traffic intensity we are assuming that it

is<1 and which will ensure that an infinite queue will not build up.

Because mean service rate is higher than the mean arrival rate, so the infinite queue will not

build up. Now under assumption c that is mean arrival rate is<the mean service rate okay, the

equation 6 simplifies to let us see the equation 6, this equation 6 becomes 1/1+lambda 0

lambda 1 lambda 2 and lambda n-1 are all=lambda, so we have lambda/mu raised to the

power n okay.

So  we  get  the  1/1+sigma  n=1  to  infinity  lambda/mu  to  the  power  n  which  is

1/1+lambda/mu+lambda/mu whole square and so on which is  geometric  series  with ratio

lambda/mu. So we have the sum of the series as 1– lambda/mu to the power -1. So 1/1–

lambda/mu to the power–1 is 1– lambda/mu and lambda/mu we denote by rho okay. So P0

is=1-rho.
(Refer Slide Time: 14:44)



Now let us consider the case substituting equation 7 into 5 okay. So this 7 P0=1-rho, let us

put in equation number 5. Equation number 5 now is Pn=lambda/mu to the power n =P0 okay

because we are assuming that the mean service rate and the mean arrival rate are constant

okay. So we have the Pn=lambda/mu raised to power n*P0 okay and this is rho to the power

n and P0 =1-rho, so we have Pn=rho to power n*1–rho.

Now characteristics of model 1 okay so average or expected number of customers in the

system. Average or expected numbers or number of customers in the system we denote by Ls.

So if N denotes the number of customers in the queueing system, then N is a discrete random

variable. It will take values 0, 1, 2, 3 and so on and we know that Pn is the probability that n

takes the value N okay. So it is=rho to the power n*1– rho as we have seen just now for n=0,

1, 2, 3 and so on.
(Refer Slide Time: 16:02)



Now thus the expected number of customers in the system Ls is given by expected value of n

that is sigma n=0 to infinity and Pn which is sigma n=0 to infinity n*rho to the power n 1-

rho. Now when n=0, first term is 0, so we can write it as 1–rho is independent of n, so we can

write is outside and then sigma n=1 to infinity n rho to the power n. Now Ls can also be

written as rho times 1–rho*sigma n=1 to infinity n times rho to the power n-1.

So we have rho*1–rho and then this series sigma n=1 to infinity and rho to the power n–1

becomes 1+2 rho+3 rho square and so on okay and its sum we know it is=1–rho to the power-

2 okay. So we have rho*1– rho to the power–1 and therefore Ls is=rho/1–rho. Now rho is

lambda/mu, so we can put the value of rho as lambda/mu and we get Ls=lambda/mu–lambda.

So that means that average or expected number of customers in the system is=lambda/mu–

lambda.
(Refer Slide Time: 17:24)

Now average or expected number of customers in the queue or average length of the queue.

We know that queue length is given by line length–number of customers being served. Thus,

if the number of customers in the system is n, then the number of customers in the queue or

the queue length is n-1. Hence the expected length of the queue is Lq= E N-1 and so it is

sigma n=1 to infinity n-1*Pn okay

Now when n=1, the first term becomes 0 okay or before that what we can do is we can put

the value of Pn, Pn is rho to the power n*1-rho. So this summation becomes sigma n=1 to

infinity n-1*1-rho*rho to the power n and therefore using the fact that at n=1 the first term

becomes 0 and will start with 2 onwards, so n=2 to infinity n-1 1-rho*rho to the power n and

here what we can do is let us put m=n-1 so that m runs from 1 to infinity and we have m

times 1–rho*rho to the power m+1.



(Refer Slide Time: 18:49)

And therefore I can write Lq=rho square times 1-rho*sigma m=1 to infinity m times rho to

the power m–1 okay and this we know the sum of this is 1–rho to the power-2, so we have

rho square*1–rho to the power-1 and therefore Lq which is the average or expected number

of  customers  in  the  queue is=rho square/1-rho.  Rho is  lambda/mu,  so lambda/mu whole

square upon 1-lambda/mu which gives us Lq as lambda square/mu*mu–lambda.
(Refer Slide Time: 19:30)

Now let us consider the case average or expected number of customers in non-empty queue.

So this means that Lw. Lw is th expectation of N-1, N-1 is the line length okay divided by q

N-1 sorry Lw=expectation of N-1 given that N-1>0 that is the queue is non-empty okay, at

least  one  customer  is  there  okay,  so  N-1  is>0  and  therefore  expectation  of  N-1  okay

expectation of N-1, N is no, Lw=expectation of N-1 given that N-1 is>0. N is the number of

customers, N denotes the number of customers in the queue system.



So number of customers is>1 okay, so expectation of N-1/probability that N-1 is>0 and we

know that expectation of N-1 that is Lq okay=rho square/1–rho okay. Lq=rho square/1–rho.

So we have P N–1>0 =1–P0–P1. P0 means probability that N=0 and P1 is the probability that

N=1, so probability that N>1 can be obtained from 1–P0–P1 so 1–P0 is=1–rho and P1=rho

times 1–rho because Pn is=rho to the power n*1–rho for all n>or=1.

So we have on simplifying this we get rho square okay. So Pn–1> 0 is rho square, so Lw=rho

square/1–rho/rho square which is 1/1–rho and that is=mu/mu–lambda as rho=lambda/mu.
(Refer Slide Time: 21:47)

Now let us discuss the probability that number of customers in the system exceeds k okay. So

probability that number of customers in the system exceeds k that is N>k. Now this is=sigma

n=k+1 to infinity Pn n=k+1 to infinity, the value of Pn is rho to the power n*1-rho. We can

write it as rho to the power k+1*1–rho*sigma n=k+1 to infinity rho to the power n–k–1 and

this is rho to the power k+1*1– rho and we can put m as n–k–1.

When you take m=n-k–1 then this  summation becomes sigma m=0 to infinity  rho to the

power  m  and  hence  probability  that  n>k  is=rho  to  the  power  of  k+1*1–rho  and  this  is

geometric series with geometric ratio rho, it sum is 1/1–rho. So we get 1–rho to the power –1

and this will give you on simplification the probability that N is>k=rho to the power of k+1

that is lambda/mu to the power k+1.

So this  is  the probability  lambda/mu to the power k+1 is  the probability  that number of

customers in the system exceeds k.
(Refer Slide Time: 23:09)



Now let  us discuss probability  density  function of the waiting time of a customer in the

system, we denote it by fs w. So let Ts be the random variable that represents the waiting time

of a customer in the system, fs w be the probability density function of Ts and fs w given n be

the probability density function of Ts given that there are already n customers in the system

when the customer arrives.

Then, fs w is given by mu-lambda*e to the power mu w*sigma n=0 to infinity lambda w

raised to the power n/n factorial. Now the sum of the series we are all aware, the sum of the

series is e to the power lambda w, so we get mu–lambda e to power -mu w*e to power

lambda w where w is>0. Thus, the probability density function of the waiting time of the

customer in the system is fs w=mu–lambda*e to the power –mu–lambda*w where w is>0.

This is the probability density function of the exponential random variable with parameter

mu–lambda.
(Refer Slide Time: 24:30)



Now the distribution  function,  we know distribution  function  fs  w is=probability  that  Ts

is<or=w. So  when  w is<0  okay  when  w is<0  because  we  know that  fs  w, fs  w  is  the

probability density function of the random variable, this is=mu–lambda*e to the power -mu–

lambda w when w is>0. So when w is<0 okay probability is 0, so we get fs w=0. So when w

is>or=0, this fs w is=integral over 0 to w because we want the probability that Ts is <or=w.

So integral over 0 to w fs w dw and this will be=integral 0 to infinity fs w is mu–lambda*e to

the power –mu– lambda w dw okay and this is nothing but –e to the power –mu– lambda*w 0

to w. So this is=1–e to the power–mu–lambda w okay, so this is the distribution function of

Ts. Now average or expected waiting time of a customer in the system. So the waiting time of

a customer in the system is the random variable Ts which is exponentially distributed with

parameter mu–lambda as given in equation 9, here okay mu–lambda. 

So thus the average waiting time of a customer in the system is 1/mu–lambda because it

follows exponential distribution okay.
(Refer Slide Time: 26:45)



Now  the  probability  that  the  waiting  time  of  a  customer  in  the  system  exceeds  t,  so

probability that Ts is>t is integral over w=t to infinity fs w dw, fs w is mu–lambda*e to the

power -mu–lambda*w, so on integration we get probability that Ts is>t=e to the power –mu–

lambda*t. So this is the probability that waiting time of a customer in the system exceeds t.

Probability density function of the waiting time of a customer in the queue fq w is given by

this the probability density function of the waiting time of the customer in the queue is fs

w=lambda/mu mu-lambda*e to the power –mu–lambda*w for w>0, 1-lambda/mu okay for

w=0 and 0 for w<0.
(Refer Slide Time: 27:41)

The distribution function of the waiting time of the customer in the queue is fq w which is

probability that Tq is<or=w okay probability that Tq is<or=w, so we have defined Tq earlier,

fs w is the probability density function of Ts. where Ts is the random variable that represents



the  waiting  time  of  a  customer  in  the  system,  and  Tq  denotes  the  random variable  that

represents the waiting time of a customer in the queue okay.

So this is the probability density function of the waiting time of the customer in the queue

okay where Tq is the random variable which denotes the waiting time of the customer in the

queue. So fs w is given by this and then we have this is not fs w, this is fq w okay. So this is

fq w, fq w is given by these values okay, fq w=lambda/mu mu–lambda e to the power-mu–

lambda*w for w>0, 1-lambda/mu for w=0 and 0 for w<0 okay.

And then the distribution function of the waiting time of the customer in the queue is given

by fq w where probability that Tq is<or=w. So this can be, these are given by 0 when w is<0,

1-lambda/mu when w=0, 1-lambda/mu+lambda/mu e to the power –mu–lambda*w for w>0.

We can easily obtain these values because fq w is=integral over –infinity to w fq w dw okay

and fq w we have here fq w is 0 when w is<0 okay.

So this will go to 0 to w fq w dw okay, so from here we can easily find these values. Now the

probability that the waiting time of a customer in the system exceeds t. Here 0 to w when w

is>0 we can put  the value of fq w okay fq w for w>0 is  given by this  expression okay

lambda/mu*mu-lambda e to the power–mu–lambda*w. So when you integrate this okay we

will get lambda/mu*1-e to the power–mu–lambda*w okay.

So we will get this, if you integrate this, 0 to w fq w dw okay, what we will get 0 to w

lambda/mu*mu-lambda e to the power –mu-lambda*w dw and this will be lambda/mu here

we will have –e to the power–mu–lambda*w 0 to w. So we will get this as lambda/mu*1-e to

the power –mu–lambda*w okay. So that is the formula for probability that Tq is <or= w. Now

probability that the waiting time of a customer in the system exceeds t okay.

Probability that Tq is>t, so this is=integral t to infinity fq w dw and fq w dw is lambda/mu

mu-lambda e to the power–mu–lambda w dw. So this lambda/mu and this quantity is the

derivative of –e–mu–lambda*w okay. So probability that Tq is>t is lambda/mu times –e to

the power-mu–lambda*dw*w integral over the limits are t to infinity, so lambda/mu now this

goes to 0 when the w goes to infinity.

So this 0 and when you put the lower limit, you get 0+e to the power–mu–lambda*t. So we

get  mu–lambda*e  to  the  power  we  get  lambda/mu*e  to  the  power–mu–lambda*t,

lambda/mu*e to the power–mu–lambda*t okay.
(Refer Slide Time: 32:37)



Now the average waiting time of a customer in the queue Wq is given by lambda/mu*mu–

lambda. The average waiting time of a customer in the queue if he, she has to wait is given by

E expectation of Tq where Tq is>0. Expectation of Tq is nothing but Wq and Tq>0 is 1-P

Tq=0. Now expectation of Tq given Tq>0 is  then Wq=lambda/mu times mu–lambda and

probability that Tq=0 okay.

Probability  that  Tq=0 we have  seen here probability  that  Tq=0 okay=1-lambda/mu okay,

probability  that  Tq=0=1-lambda/mu,  so  1-this  is  Wq/1-1-lambda/mu  and  this  gives  you

Wq/lambda/mu but Wq=lambda/mu*mu-lambda/lambda/mu. So this is=1/mu–lambda, so we

get this.
(Refer Slide Time: 34:11)

Now let us discuss Little’s formulae for the MM1 infinity FIFO model. The relation between

Ls, Lq, Ws and Wq are given as follows. Ls=lambda Ws, Lq=lambda Wq, Ws=Wq+1/mu,



Ls=Lq+lambda/mu.  So first  let  us  see Ls=lambda Ws okay. We know that  Ws is  1/mu–

lambda, Ls is what? Ls is lambda/mu–lambda okay.
(Refer Slide Time: 34:54)

Ls  is  lambda/mu–lambda,  Ws  is=1/mu–lambda  okay,  so  these  2  relations  imply  that

Ls=lambda times Ws okay. So this is how we get the first formulae Ls=lambda Ws. Now let

us look Lq and Wq. Let us look at Lq. Lq=lambda square/mu*mu–lambda okay.
(Refer Slide Time: 35:28)

So Lq=lambda square/mu*mu–lambda okay and Wq is lambda/mu times mu–lambda. So,

Lq= lambda times Wq okay, so Lq = lambda times Wq.
(Refer Slide Time: 35:51)



Now  let  us  show  that  Wq+1/mu,  Wq  +1/mu=Wq  is=lambda/mu  times  mu–lambda.  So

this=1/mu lambda+mu-lambda/mu–lambda. So this is 1/mu–lambda and 1/mu–lambda is Ws.

Ls is this, Ws is here, Ws is /mu–lambda. So this is Ws okay and then Lq+lambda/mu. Lq

is=lambda  square/mu  times  mu–lambda.  That  is  the  value  of  Lq+lambda/mu.  So  this  is

lambda/mu times lambda/mu–lambda+1.

And we get here lambda/mu lambda+mu-lambda that means mu/mu–lambda. So we can say

we get lambda/mu–lambda and lambda/mu–lambda is Ls okay, Ls lambda/mu–lambda. So if

one parameter if Ls, Ws or Lq or Wq one is known, the other three can be found from Little’s

formulae, so they are very useful.
(Refer Slide Time: 37:37)
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This is the proof. Now so the Little’s formulae are very useful in the study of MM1 infinity

FIFO model because if any of the quantities Ls, Lq, Ws and Wq are available, then the other

three can be readily obtained from Little’s formulae which are given in the above theorem.
(Refer Slide Time: 37:56)

Now let us look at the first question. What is the probability that a customer has to wait more

than 15 minutes to get his service completed in MM1 FIFO queue system? If lambda=6 per

hour and mu=10 per hour okay. So we are given the mean service rate that is mu=10 per hour

and mean arrival rate lambda=6 okay. Now let us see which formula gives us the probability

that a customer has to get wait more than 15 minutes to get the service okay.

So let us go to that formula. So the probability that the waiting time of a customer in the

system exceeds t okay. So if the customer has to wait more than 15 minutes then probability

that  Ts is>or=15  we  have  to  find,  so  we  have  probability  that  Ts>t  okay. So  we  have



probability that Ts is>t is=e to the power–mu-lambda*t. So this equal to e to the power–mu is

10, lambda is 6*t so we get e to the power–4t.

So if the customer has to wait more than t minutes then probability is Ts>t. Now here we

want the probability that the system that the customer has to wait more than 15 minutes okay.

So t here t=15.okay so probability that Ts is>15, now 15 we have to convert into hours, so 1/4

hours, so probability that Ts is>1/4=e to the power -4*1/4 which is=e to the power of -1 okay.

So the probability that the customer has to wait more than 15 minutes to get the service is e to

the power -1.
(Refer Slide Time: 40:10)

Now find consider MM1 queue system find the probability that there are at least N customers

in the system, so number of customers are>or=n. let us go to that formula. Probability that

number of the customers in the system exceeds k okay. So probability that the number of

customers  in  the  system exceeds  k is  given by this  formula  probability  that  N>k=sigma

n=k+1 to infinity Pn okay.

And Pn is rho to the power n*1-rho. So let us go to that formula. So we want the probability

that there are at least n customers. So probability that N>or=n. So probability that sigma k=n

to infinity Pk okay so this is=sigma k is= n to infinity rho to the power k*1-rho okay so we

will have rho to power n*1-rho we can write outside and here we will have k=n to infinity

rho to power k-n.

And k-n we can write as=i then this is rho to power n*1-rho*sigma i=0 to infinity rho to the

power i. So we will have the rho to the power n*1-rho and this is 1/1-rho. So this will be=rho

to  the  power  n  and  rho  is=lambda/mu  okay.  So  lambda/mu  raised  to  the  power  n.  So



probability that there are at least n customers in the system is given by lambda/mu raised to

the power n.
(Refer Slide Time: 42:15)

Now consider an MM1 queueing system. If lambda=6, mu=8 find the probability of at least

10 customers in the system. So we have just now found the probability that there are at least n

customers  in  the  system.  So let  us  take  n=10 here  okay. So we have  probability  that  is

N>or=10 is=lambda/mu raised to the power 10 and lambda is=6, mu is=8 raised to the power

10, so this is 3/4, so this is 0.75 raised to the power 10 and this comes out to be 0.0563 okay.
(Refer Slide Time: 43:03)

Now let us consider another problem. In a given MM1 queueing system if lambda=12 per

hour, mu=24 per hour. So mean service rate is 24 per hour and mean arrival rate is 12 per

hour. Find the average number of customers in the system. So let us find the formula for the

average number of customers in the system. So average or expected number of customers in

the system is given by Ls and Ls=lambda/mu–lambda, so we will apply this formula.



So average number of customers in the system is given by Ls which is lambda/mu-lambda.

So Ls is=lambda/mu–lambda and lambda is=12 okay 12 per hour, mu=24 per hour okay. So

we have 24-12, so this is 12/12 and we have 1 here okay because this is service rate per hour.

In 1 hour, the arrival rate is 12 and in 1 hour the service rate is 24 okay
(Refer Slide Time: 44:18)

Now suppose that the customers arrive at a Poisson rate of one per every 12 minutes okay

and that the service time is exponential at a rate of one service per 8 minutes. So lambda here

is=1/12 and mu=1/8 okay. The average number of customers in the system just now we have

seen the average number of customers in the system is  given by lambda/mu–lambda.  So

Ls=lambda/mu–lambda and this is 1/12/1/8-1/12.

So we have 1/12 and we have here 24 and we get 3-2, so we get 1/12*24, so we get 2. So

average number of customers in the system is 2. The average time a customer spends in the

system. Let us find the average time a customer spends in the system. So average or expected

time of a customer in the system Ws. Ws is 1/mu–lambda okay. So Ws=1/mu–lambda. Here

the average time of customer so Ws=1/mu–lambda and this is 1/1/8-1/12 okay, so 1/24 and

we have 3–2, so this is 24 minutes. So 24 minutes is the answer.
(Refer Slide Time: 45:57)



Now we go to this last question on queueing theory. A super market has a single cashier.

During  peak  hours,  customers  arrive  at  a  rate  of  20  per  hour  okay.  So  arrival  rate  is

lambda=1/20 and the average number of customers that can be processed by the cashier is 24

per  hour. So  mu=1/24 okay. Calculate  the  probability  that  the  cashier  is  idle.  When the

cashier is idle, we have to find the P0 okay, the probability that there is no body in the queue

okay in the system.

P0=1-rho, P0, we found the formula for P0, P0=1-rho okay and Pn is the probability that

there are n customers in the system. So if the cashier is idle, there will be nobody in the

system, so P0=1–rho we have to find. So P0 okay the first part is P0=1–rho which is 1–

lambda/mu okay and this is 1-1/20/1/24 okay, so 24/20 okay, so not like this. Here lambda=

we have to consider per hour okay.

So lambda is=20 and mu=24 okay. So P0=1–rho and therefore it is 1–lambda/mu which is=1-

20/24 okay, so 24-20/24. This means that it is 4/24 so 1/6 hours okay. So probability is 1/6.

So P0 is  this  is  1/6 and then  the  average  number of  customers  in  the  queueing system.

Average number of customers in the system we know, average number of customers in the

system is given by Ls.

Ls  is=lambda/mu–lambda  okay. So Ls=this  second part  Ls=lambda/mu–lambda  okay. So

lambda is=20/24-20. So we get 1/4 okay. So average number of customers in the queueing

system is given by Ls and Ls is=20/4, so this is=5 okay. So average number of customers in

the queueing system is 5, so we have got the answer. Now average time a customer spends in

the system okay. Average time a customer spends in the system is given by Ws which is

1/mu–lambda okay.



So Ws=1/mu–lambda which is=1/24–20, so 1/4 that is  15 minutes.  This 1/4 hours which

is=15 minutes.  Then,  we have  average  time a  customer  spends in  the  queue waiting  for

service okay. So average time a customer spends we have got, no we have to first do this,

average time of customers in the queue, average number of customers in the queue. We can

get from this formula.

Ws we have got=Ws=Wq+1/q okay. Average number of customers in the queue, so Lq we

have  to  find  Lq  okay.  What  is  the  formula  for  Lq?  Lq=Ls,  Ls=Lq+lambda/mu  okay.

Ls=Lq+lambda/mu okay. Ls we have found, Ls=average number of customers in the system

okay, average number of customers in the system we have found, Ls=5 okay. So we have

5=Lq+lambda/mu.

Lambda=20, 20/24 okay so we have 5/6, so Lq=5–5/6, so 25/6, 25/6 means 4.1667 okay, so

that  is  Lq.  Lq  is  the  average  number  of  customers  in  the  queue.  Then,  average  time  a

customer spends in the queue waiting for service okay. So that means Wq. Wq is the average

time a customer spends in the queue waiting for service okay. So we have Wq. Wq=Ws–1/q,

Ws–1/mu.

Ws we found to be=1/4 okay 1/4 hours and 1/mu, 1/mu is 1/24 okay. So this is 24 and we get

here 6-1, so 5/24 okay, so 5/24 hours that is to say 12.5 minutes. So that is the average time a

customer spends in the queue waiting for service. So this finishes the discussion on queueing

theory. Now let us take an example on reliability theory.
(Refer Slide Time: 52:20)

Consider  an  equipment  or  a  system  which  is  subjected  to  failure.  Let  F  t  denotes  the

probability of the equipment or system failure within t units of time. The system reliability R



t is the probability that failure will not occur in t units of time and thus we can say that R t=1-

F t.  Assume that  a number of components are involved in the system. Let  us consider 2

configurations, series and parallel configuration.
(Refer Slide Time: 52:50)

In the series configuration, failure of any one component means failure of the system. In the

parallel configuration, system fails only when all the components fail. Assume that in both

the  configurations  the  component  fail  independently.  Now  this  is  the  system  in  series

configuration, this is the system in parallel configuration. So there are 3 components; C1, C2,

C3 which are connected in series and here there are 3 components which are connected in

parallel configuration.
(Refer Slide Time: 53:24)

So let F1 t, F2 t and F3 t denote the failure probabilities of the 3 components C1, C2, C3

respectively. R1 t, R2 t, R3 t are the corresponding reliabilities. Then, Ri t=1-Fi t, i=1, 2, 3.

The  system  failure  probability  will  be  denoted  by  Fs  t  and  the  corresponding  system



reliability Rs t will be then=1-Fs t okay. For the series configuration, Rs t is=1-Fs t=1-F1 t*1-

F2 t*1-F3 t. Why?
(Refer Slide Time: 54:07)

Because the probability that the system does not fail  before t units of time okay. We are

looking at the probability that the system does not fail. We are finding the probability of the

reliability okay. That is the system does not fail before t units of time and we are considering

the series configuration. So none of the 3 components must fail and therefore Rs t=1-F1 t*1-

F2 t*1-F3 t.

Because 1-F1 t is the probability that the system component C1 does not fail before t units of

time and similarly 1-F2 t is the probability that the component C2 does not fail before t units

of time and similarly 1-F3 t is the probability that the component C3 does not fail before t

units of time. So their product then gives us the probability that the system does not fail

before t units of time in the case of series configuration okay.

So for the parallel  configuration what will be the probability? Fs t=1-R1 t*1-R2 t*1-R3 t

because in the parallel configuration the system fails only if all the 3 components fail okay.

So 1-R1 t is the probability that the component C1 fails and 1-R2 t is the probability that the

component C2 fails and 1-R3 t is the probability that the component C3 fails. So when all of

them fail, the probability will be given by Fs t and then Fs t gives you the system reliability

that is Rs t, Rs t=1-Fs t okay.

So in the case of parallel configuration, Rs t will be given by 1-Fs t where Fs t is given by this

product okay.
(Refer Slide Time: 56:07)



So suppose let us consider an example suppose Fi t is given by 1–e to the power –alpha i t,

alpha i is>0, i is=1, 2, 3. So Fi t as we have seen, Fi t is the probability that the component C1

fails okay. This Fi t is the probability of failure of the component okay so Fi t is given by 1–e

to the power –alpha i t that means F1 t is 1–e to the power–alpha 1t. This is the probability of

the failure of component C1.

And when you take i=2, you get the probability of the failure of component C2 and when you

take i=3 you get the probability of the failure of component C3. So Fi t’s are given and then

the  time  t  up  to  the  failure  then  follows  the  exponential  distribution  for  the  series

configuration. We have seen in the case of series configuration Rs t=Rst is 1–F1 t*1-F2 t*1-

F3t, so we have Rs t=1–F1 t.

F1t is 1–e to the power of –alpha 1t okay*1–e to the power –alpha 2t*1–1-e to the power –

alpha  3t  okay  and  you  get  this  expression  okay  and  for  the  parallel  configuration  Rs  t

is=parallel configuration Rs t=1-Fs t okay, Fs t is given by 1–R1 t*1-R2 t*1-R3 t okay. So

yeah so we get in the case of parallel configuration Rs t=1–Fs t, Fs t=1–R1 t, 1–R1 t is the

probability that the first component fails that is F1 t, F1 t*F2 t*F3 t okay.

So we get  1-F1 t*F2 t*F3 t  okay so that  is  the system reliability  in the case of parallel

configuration. So we have discussed both the cases okay. The system reliability in the case of

parallel configuration and the system reliability in the case of series configuration okay and

we have taken one example where we have taken particular values of the failure probabilities

of the 3 components given by Fi t=1–e to the power–alpha i t where alpha i is>0 and i=1, 2, 3.



And we have found the values of Rs t for both the cases the series configuration as well as

parallel configuration. So with that I would like to end this lecture. This is our last lecture on

advanced engineering mathematics. Thank you very much for your attention.


