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Lecture - 18
Residue at a Singularity

Hello friends. Welcome to my lecture on Residue at a Singularity. The behaviour or singularities

into poles and essential singularities.
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The classification  of singularity  into poles  and essential  singularities  is  not  merely  a  formal

matter.  Because  the  behaviour  of  an  analytic  function  in  a  neighbourhood  of  an  essential

singularity is entirely different from that in the neighbourhood of a pole. Let us see how is the

nature of the function in the neighbourhood of a pole. Suppose f(z) is analytic and has a pole at

z=z0, then mod of f(z) tends to infinity at z tends to z0 in any manner.
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That means in a neighbourhood of z=z0 f(z) becomes indefinitely large. So if f(z) has a pole of

order m at z=z0, then we can write f(z) like this, because if f(z) has a pole of order m at z=z0,

then by Laurent series f(z)=sigma n=0 to infinity bn (z-z0) to the power n+sigma n=1 to m cn (z-

z0) to the power –n. So here this is nothing but z1/z-z0 to the power m and then we shall have

sigma n=0 to infinity bn(z-z0) to the power (n+m)+c1*(z-z0) to the power.

We have here c1(z-z0) to the power -1. So this will be equal to m-1, okay c2 (z-z0) to the power

m-2 and so on cm-1 (z-z0) +cm, okay. So we can write like this, okay. If z has a pole of order m

at z=z0. Now this is equal to (z-z0) to the power –m*Phi z and Phi z is this Taylor series. You

can see here when n=0, we have b0 (z-z0) to the power m here. So we can start with this cm, cm-

1, z-z0, then cm-2 (z-z0) square, then c1 (z-z0) to the power m-1.

Then the term z-z0 to the power m, which is b0 (z-z0) to the power m, then b1 (z-z0) to the

power m+1 and so on. So this is the expression inside the square brackets is a Taylor series of

some function, which we denote by Phi z. 
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Now Phi z is also, you can see Phi z =z0=cm, which is non-zero, because f(z) has a pole of order

m at z-z0. So 5z is analytic and mod of z-z0<R and Phi z0 =cm where cm is non-zero. Now we

can take the limit of mod of f(z) as z tends to z0, okay. Mod of f(z)= mod Phi z /mod of(z-z0) to

the power m, so f(z) goes to z0. Phi z is a continuous function, because it is analytic in this

region. So it is continuous and also Phi z is not equal to 0.

So f(z) tends to z0, we can see that this expression mod of Phi z /z-z0 to the power m goes to

infinity. So when f(z) has a pole of order m in a neighborhood f(z) in a neighbourhood of z=z0,

f(z)  becomes  arbitrarily  large,  okay,  so  indefinitely  large.  So  thus  in  a  sufficiently  small

neighbourhood of a pole of an analytic function, the f th root value of the function becomes

indefinitely large.
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Now suppose, let us look at the limit point of zeroes and poles. If f(z) is an analytic function in a

domain D and z1, z2, is a sequence of zeroes and f(z) and D having a limit point in the interior of

D, then f(z) is identically 0 in D. So let us consider that z0 be the limit point of the sequence of

zeroes, z1, z2 and so on of f(z). Since z0 is the interior point of the domain D, okay, it follows

that f(z) is continuous at z0, okay, f(z) is analytic inside D.

And therefore it is continuous inside D and z0 is a point in the interior of D, so f(z) is continuous

at z0 and therefore f(z0) must be 0. Now let us see how f(z0)=0. 
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See we have z1, z2, and so on. This is the sequence of zeroes of f(z), okay and z0 is the limit

point of z1, z2 and so on. This is the sequence. Now f(z) is continuous at z0 implies that for a

given  epsilon>0  there  exist  a  positive  number  delta,  such  that  mod  of  f(z)-f(z0)<epsilon

whenever mod of z-z0 is less than delta, okay. Now for delta>0, okay for delta>0, we can find

and integer n0, such that mod of zn-z0<delta for all n>=n0, okay.

So what will happen, mod of zn-z0 is < delta for all n > R=n0. Let us combine the equation 1 and

2, okay. From 1 and 2, we find that mod of f(zn)-f(z0)<epsilon for all n>=n0, because all these

points zn, for which n>=n0, they are at a distance delta less than delta from z0 and so by the

definition of continuity mod of f(zn)-f(z)<epsilon. This implies that mod of 0-f(z)<epsilon for all

n>=n0, okay. So this we mean that mod of f(z0)<epsilon, okay.

So this means that f(z0)=0 since epsilon>0 is arbitrary and thus we can say that because of the

continuity of f(z), f(z)=z0 and z0 being the limit point of the sequence of zeroes at z1, z2, and so

on, it follows that f(z0) =; so this f(z0)=0, now since z0 is a limit point of this sequence z1, z2

and so on, okay. So every neighbourhood of z0, howsoever a small be it, will have infinitely

many points of the sequence z1, z2 and so on.

This implies that z=g(z0), okay, is not an isolated zero of f(z), okay. It is not an isolated zero of

f(z) and therefore f(z) must be identically = 0. So if f(z) is an analytic function and z1, z2, zn is a

sequence of zeroes, having a limit point in the interior of D, then f(z) must be identically 0.
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Now from the above theorem, it follows that the limit point of the sequence of zeroes of a non-

zero function, which is analytic in a domain D cannot be an interior point of D. If it is interior

point of D, then f(z) must be identically 0. So if the sequence of zeroes of a non-zero analytic

function is a singularity of f(z), it is an isolated singularity. No this isolated singularity cannot be

a pole, okay.

Because in the neighbourhood of, in any neighbourhood of this singularity, f(z) is not becoming

indefinitely  large.  Every  neighbourhood  of  z=this  singularity  at  z=say  z0,  okay,  we  have

infinitely many zeroes of the function f(z), okay. Since f(z) does not become indefinitely large in

any neighbourhood of this singularity at z=say z0, it follows that it is a not pole. Therefore, it

must be an isolated essential singularity.

So to discard this case, that this is not a pole, we are using this theorem, okay, because poles are

isolated singularities. So here we are finding an isolated singularity, but that isolated singularity

cannot be a pole. If it is a pole, then in an arbitrarily small neighbourhood of z=z0, f(z) must tend

to infinity as z tends to z0, but here what do we notice, howsoever a small neighbourhood of z0

be there, there are infinitely many zeros of the function f(z).

And therefore f(z) tends to infinity is not possible. So the singularity at z=z0 cannot be a pole, it

must be an isolated essential singularity. So this means that if the analytic function f(z) is non-



zero, then the sequence of its zeros will always tend to an isolated essential singularity of the

function. So for example, let us consider this f(z)=sin 1/z. it has zeros at z=1/n pi, where n takes

values +/-1, +/-2, and so on. You can see sin 1/z=0 means 1/z=n pi, okay.

So where n takes values +/-1, +/-2 and so on. So z=1/n pi where n=+/-1, +/-2 and so on. Now let

this sequence z=1/n pi, okay for this sequence, the limit point is z=0, okay. Now since sin 1/z

okay,  sin  1/z  is  a  non-zero  analytic  function,  therefore  z=0  must  be  an  isolated  essential

singularity of sin 1/z.
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Now let  us  go  to  Picard’s  theorem,  which  tells  us  the  nature  of  an  analytic  function  in  a

neighbourhood of n isolated essential singularity. So an analytic function f(z) having an isolated

essential  singularity  at  z=z0 assumes every value with at  most one exceptional  value in any

arbitrary small neighbourhood of z0. So it means that if f(z) has an isolated essential singularity

at  a  point  z=z0,  then  it  will  assume every  value  except  at  the  most  one value,  okay, in  an

arbitrarily small neighbourhood of z0.

Let us illustrate this Picard’s theorem for the function f(z)=e to the power 1/z. We are going to

show that this f(z)=e to the power 1/z, which has an isolated essential singularity at z=0 assumes

every value in an arbitrarily small neighbourhood of z=0, except just one value and that value is



z=0. We can see that e to the power 1/z is never 0 for any complex number z. To show that, let us

consider f(z), let us multiply e to the power 1/z/e to the power 1/z conjugate, okay.

Then this  is  into  the  power  1/z+1/z  conjugate,  okay, which  is  equal  to  e  to  the  power  z+z

conjugate/z conjugate, okay and if z=x+iy, z conjugate will be x-iy. So this will be e to the power

2x/mod of z square. Z conjugate is mod of z square, so this is x square+y square, okay, so x

square+y square and z is a non-zero complex number. So this e to the power 2x/x square+y

square. This is the real function, okay 2x/x square+y square is a real number, okay.

So this is e to the power y where y is 2x/x square+y square and e to the power y, we know, e to

the power y is always is >0 for every y, okay for every y belonging to R, okay. So e to the power

z, thus e to the power 1/z can never be 0 for any z, for any complex number z, for any z0=0,

okay. Now let us show that it assumes every value, okay, in an arbitrary small neighbourhood of

z=0, okay, except of course can never be 0, okay.

Now let us say let z be equal to Re to the power i theta and c=c0 e to the power i alpha be any

complex number, okay c=c0 e to the power i alpha where c is not zero be any complex number,

then e to the power 1/z=e to the power 1/Re to the power i theta will be equal to e to the power

1/R cos theta-i sin theta, okay e to the power 1/R*e to the power –i theta is e to the power 1/R

cos theta-i sin theta. Let us put it equal to c0e to the power i alpha, okay.

This c0e power i alpha, so then equating the absolute values and arguments on both sides, you

see we have e to the power 1/R cos theta, left side is e to the power 1/R cos theta*e to the power-

i/R sin theta=c0 e to the power i alpha. So taking absolute values both sides, we find that e to the

power 1/R cos theta=c0 and equating the arguments what we get alpha=-1/R sin theta, okay. So

now this equation gives you e to the power 1/R cos theta=c0.

E to the power 1/R cos theta=c0 implies that 1/R cost theta=lnc0, okay and alpha=-1/R sin theta

gives you what or we can say cos theta=Rlnc0, okay and sin theta=-alpha R, okay sin square

theta+cos square theta=1, so we can say that R square alpha square+R square lnc0 square=1or



we can say R square=1/lnc0 square + alpha square and tan theta=-alpha R/Rlnc0, so tan theta=-

alpha/lnc0, okay. Now let us see R can this R, R is the modulus of z, okay.

This  R can be made arbitrarily  small  by adding multiples  of 2pi to  this  alpha.  Alpha is  the

argument of this complex number c and adding multiples of 2pi to alpha, this c will remain

unaltered, okay. So we notice that we obtain.
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R square=1/lnc0  square+alpha  square  and tan  theta=-alpha/lnc0,  okay where  we have  taken

c=c0e to the power i alpha, okay. Now what we notice here is that R can be made arbitrarily

small by adding integer multiples of 2pi to alpha, okay. So we can replace alpha by alpha+2npi,

okay where n is an integer, okay, but that will not change the value of c, c will remain c0e to the

power i alpha+(-2npi) if you take, it will remain c0e to the power i alpha. 

So without changing the value of this c, so c=c0e to the power i alpha again. So without, so R

can be made arbitrarily small by adding integer multiples of 2pi to alpha, but c remains, leaving c

unaltered, okay. Now what we have seen. You take any complex number c=c0e to the power i

alpha where c is of course non-zero, okay then in an arbitrarily small neighbourhood of z=0,

okay. See this Rz we have taken as Re to the power i theta, okay.



So in an arbitrarily small neighbourhood of z=0, because when you add integer multiples of 2pi

to alpha, then this R will go on becoming small, so R can be made arbitrarily small by adding

integer multiples of 2pi to alpha and this gives you a neighbourhood of z=0. So in an arbitrarily

small neighbourhood of z, okay=0, e to the power 1/z assumes is an arbitrary complex number.

This is an arbitrary complex number other than 0, okay. Now let us go to residue at a singularity.
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Let f(z) have an isolated singularity at a point z=z0. Isolated singularity means you can find a

neighbourhood of z=z0 in which f(z) does not have any other singularity, okay. Then, f(z) can be

represented by Laurent series f(z)=sigma n=0 to infinity bn(z-z0) to the power n+sigma n=1 to

infinity cn/z-z0 to the power n. This series converges in a deleted neighbourhood of z0. So if you

have z0 point here, okay.

Then you can find the neighbourhood of z0, okay, which is a deleted neighbourhood, okay. R is

the distance of z0 from the nearest  singularity  of f(z).  So in this  neighbourhood f(z) can be

represented by the Laurent series given by this.
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From the Laurent series expansion, we find that the coefficient c1 of 1/(z-z0)=1/2pi i integral/c

f(z) d(z) or we can say integral over cf(z)d(z)=2 pi ic1. Let us call that in the Laurent series cns

are given by 1/2pi i integral/c f(z)d(z)/(z-z0) to the power –n+1, okay n taking values 1, 2, 3 and

so on, okay. So here if you take n=1, here taking n=1 what do you get 1/2pi ic1, okay gives you

1/2pi i integral/c f(z)d(z), okay. So when you take n=1 here, you get the value of c1.

This c1 is called the residue of f(z) at z=z0. Residue of, can be denoted like this, residue of f(z) at

z=z0, okay. This is coefficient of 1/z0 you can see. This is c1/z-z0 like that. The coefficient of

1/z-z0 is c1 here, okay and the c is the simple closed curve, c is any simple closed curve, which

lies in the annular region this 1, annular region and in circles z0 that is z0 lies in its interior. So it

can be taken any simple closed curve like this, okay, which lies in the annular region 0<mod of

(z-z0)<R and encircles the inner circle, point circle. 

So we can say this is integral/c f(z)d(z)=2pi ic1 where the integration being taken in the counter

clock by sense around a simple close past c, which lies in the region 0<mod of (z-z0)<R and

contain the point z=z0 in its interior. The coefficient c1 in the development 1 of f(z), in this

development  the coefficient  of c1,  the coefficient  c1 is  called the residue of f(z) at  z=z0 be

denoted by residue of f(z) at z=z0 like this.
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Now Laurent  series  of  f(z)  can  be obtained by different  methods  without  using the  integral

formulas for the coefficients. You know, we have the integral formulas for the coefficients bn and

cn. For cn we have this formula and for bn we have the formula 1/2pi i integral/c f(z)d(z)/z-z0 to

the power n+1 where n=0, +/-1, +/-2 and so on, okay. So Laurent series of a function f(z) are

obtained by different methods without using rarely the formulas for the coefficients are used.

Okay, we use alternate methods to find the Laurent series of f(z) in a given annular region. So we

obtain the Laurent series of the function f(z) by any alternate method and then we determine the

coefficient of 1/z-z0 in that, which gives us the value of c1. Then the integral of f(z)d(z) around

the curve c is given by 2pi i*c1, okay. We can use that Laurent series to determine the contour

integral. So for example, let us consider this function.

Integral/c f(z) square e to the power 1/z here f(z)=z square e to the power 1/z, which we can

write as z square*let us write the expansion of e to the power 1/z. We know that e to the power z

is 1+z+z square/2 factorial z cube/3 factorial and so on. So replacing z by 1/z we get e to the

power 1/z as 1+1/z 1/2 factorial z square 1/3 factorial z cube and so on, which converges in the

region 0<mod of z<infinity. So here 1+1/z 1/2 factorial z square 1/3 factorial z cube and so on.

We get this. So this is z square+z+1/2 factorial 1/3 factorial*z 1/4 factorial*z square and so on

we  get,  okay. Now  this  is  the  Laurent  series  of  the  function  f(z)  in  the  region  z<mod  of



z<infinity, okay. z=0 is the only singularity of f(z) and this is an essential singularity you can see,

because the principle part, this is the part, which is sigma this part. This part is corresponding to

sigma n=0 to infinity bn z to the power n.

Here we are taking z0=0 and this part,  okay corresponds to sigma n=1 to infinity cnz to the

power –n, okay. So the principle part contains infinitely many terms and therefore the singularity

at z=0 is n essential singularity. So f(z)=z square/1/z has an isolated essential singularity at z=0

and the coefficient of, now let us find the coefficient of 1/z-z0, z0 is 0 here. So coefficient of

1/z=c1=1/3 factorial, which is 1/6, okay.

So integral/cz square e to the power 1/zd(z) will be equal to 2pi ic1, okay. So 2pi i/6 and we get

pi i/3, okay, but the integral around c is being taken in the counter clock by chance. Now let us

take one more example.
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Let us take one more example, say integral/c sin z/z to the power d(z), okay. You can see that sin

z/z to the power 4 can be expressed as 1/z to the power 4 and we know the expansion of sin z (z-

z cube/3 factorial z5/5 factorial and so on and this is therefore z/z cube, so 1/z cube-z/3 factorial

and  then  we  have  1/3  factorial*z,  okay. Then  1/5  factorial*z,  okay  and  then  we have  -1/7

factorial into z to the power 3 and so on. Now here you can see.



The principle part contains only finitely many terms. There are only 2 terms in the principle part

1/z cube-1/3 factorial z, okay. Since the principle part contains only finitely many terms we have

a pole at z=0. We have a pole at z=0 of order 3. We have -1/3 factorial*1/z+1/z cube. So it is of

order 3, the coefficient of 1/z=-1/3 factorial that is -1/6. So this is the value of c1 and therefore

the integral/c or sin z/z to the power 4, okay d(z)=2pi i*c1, which is 2pi i*-1/6.

And this is –pi i/3 and you can notice that the region of convergence is 0<mod z<infinity. Mod

z=1 is the circle, this 1. This is mod z=1, okay. So this is 0, okay, mod z=1 is the simple closed

curve, which lies in this region, okay 0<mod z<infinity and contains the point z=0 in its integral,

same is the case here in the previous example, the region of convergence is 0<mod z<infinity

and mod z=1 lies in this annular region and encircles the point z=0, this point.

This  is  mod z=1,  okay. This  is  how we can  use  the  Laurent  series  to  determine  a  contour

integration. In our next lecture, we shall study the residue theorem, which will be an extension to

of this case. Here, we have only 1 singularity inside the simple closed path c. So this method will

be extended to the case where the curve c contains finite number of singularities inside it, okay

and then it is a very simple and elegant method to determine the contour integration in case the

curve c has infinite number of isolated singularities inside it.

So with this I would like to end my lecture. Thank you very much for your attention.


