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Lecture - 13
Uniform Convergence of Series

Hello friends, welcome to my lecture on Uniform Convergence of series of complex functions.

So let us consider a series of complex functions sigma n=1 to infinity fn(z) we shall say that the

series converges uniformly to a function fz in a region R which may be open or closed of the z-

plane.
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If for a given epsilon > 0 we can find an integer n0 depending only on epsilon such that mod of

fn(z) mode of –fz is < epsilon for all n >= n0 and for every z belonging to R. Hence, if the series

converges uniformly in R then everywhere in R we can approximate the sum f(z) of the series by

an error < epsilon by taking only n0 terms of the series. It is possible that for some points in R

even a lesser number of terms may suffice but nowhere in R we shall need more than n0 terms.

It is clear that every uniformly convergent series is convergent but the converse is not true as we

can see later.
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If a series of complex functions converges uniformly in a region R of the z-plane and phi z is any

function which is bounded in R by which the terms of the series are multiplied, then the resulting

series also converges uniformly. This is very simple. Suppose phi z is bounded function in R then

their exist in constant time > 0 such that mode of phi z is <= m for all z belonging to R, okay.

Now the series converges uniformly in R so by the definition of uniform convergence mode

fn(z)-fz is < epsilon so mod fn(z)–fz is <, let us say epsilon by m, okay.

We can take epsilon to be epsilon by here, so mod of fn(z)-fz is < epsilon by m for all n >= n0

and for every z belonging to R. Then what we do then we consider, sigma n=1 to infinity phi z *

fn(z) series, okay. So now fn(z) will be sum of first n terms of this series, so it will be phi z times

fn(z) and fz will be phi z * fz, okay. So mod of this will be = mod of phi z * mod of Sn(z)-fz,

okay, which is <= m times epsilon by m, okay for all n >= n0 and for all z belonging to R, which

is equal to epsilon.

So if the terms of the series are multiplied by bounded function phi z okay then even then the

series  converges  uniformly.  So  the  sum  of  a  uniformly  convergence  series  of  continuous

functions of a complex variable in the region R is a continuous function in R; this theorem can be

used as a test for uniform converges, if the sum functions of a series of continuous function is

discontinuous then we can say that the series does not converge uniformly in R.
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The integral of the sum of the uniformly convergent series of continuous functions along any

curve  lying  entirely  in  the  region  of  uniform  convergence  can  be  found  by  term  by  term

integration; the series can be integrated term by term along any curve which lies in the region of

uniform convergence.  Now the  sum function  of  a  uniformly  convergent  series  of  functions,

analytic in the region of uniform convergence, is also analytic. So we are going to prove this. 
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Let z0 be at the any point in the region R of uniform convergence of the series. Since each

function is analytic in R it is analytic in some neighbourhood of z0. Let C be any simple closed

curve contained in this neighbourhood. So let us say, take any region R, suppose this is origin R,

z0 in any point here, okay. Take as neighbourhood of z0. Let us see we any simple closed curve



contained in this neighbourhood, so we can take a neighbourhood like this okay and this is your

curve C. Okay.

So let us C be any simple closed curve contained in this neighbourhood of z0 then by Cauchy’s

integral theorem the integral of each function taken around the C vanishes. Hence, the integral of

the sum function around C is 0. Since the sum function is continuous it follows by Morera’s

theorem. In the Morera’s theorem we have said that, if the function fz is continuous in a domain

D and integral over C fz dz = 0 around any simple closed curve which lies completely inside D

then the function fz is analytic in D.

So since the sum function is continuous it follows by Morera’s theorem that it is analytic in this

neighbourhood of z0 and now z0 is any point in R so the theorem holds. The next theorem is the

derivative of the sum function of a uniformly convergent series of analytic functions can be

found at any interior point of the region of uniform convergence by term by term differentiation

of the series. So let us move this result.
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Let z be any point in the region D of uniform convergence of the series. Let us take a region

domain D okay and let us take any point z which lies in D, so let z be any point in the region D

uniform convergence of the series sigma fn(z), f(z) is the sum of the series. The terms of the

series are analytic functions in D, so fn(z) is analytic for every n in D and let C be any simple



closed curve in D which encloses z, okay, so take any simple closed curve in D which encloses z

and line together with this interior entirely within the region D. 

And let zeta be a general point on C, okay. Okay so let us take any point zeta on C. Then f zeta

will be equal to sigma n=1 to infinity fn zeta since the function 1/2pi i * zeta – z whole square is

bounded on C. Now how it is bounded? You can see zeta lies on the curve C; z is a point in the

interior of C, okay. So 1/zeta – z whole square is then analytic function on C okay so therefore it

is continuous, okay. 

So 1/zeta-z is continuous on C and which imply that 1/2pi i zeta – z whole square is continuous

on C. And so it  is bounded because C is a simple closed curve.  So it  is bounded on C and

therefore now let us apply the theorem 1, okay this theorem. If a series converges uniformly in a

region R of the z-plane and phi z is any bounded function in R by which the terms of the series

are multiplied, then the resulting series also converges uniformly.

So this series which convergences uniformly to f(z), if we multiply this series by a bounded

function then the resulting series will also converge uniformly.
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So we are multiplying this series by the bounded function 1/2pi i zeta – z whole square and then

the resulting series will also converge uniformly to f zeta over z – z whole square into 2pi i. So



sigma n=1 to infinity, fn zeta over this series, let us we are multiplying this series, okay. This

series they are multiplying by one/2pi i * zeta – z whole square. So we get this okay by theorem

1 and this series converges uniformly to this function.

Now by theorem 3 this series; now this series convergence uniformly to this and therefore we

can integrate this series term by term around the simple closed curve C which lies entirely inside

D, okay around this simple closed curve C and after we integrate around the curve C what we get

is 1/2pi i integral/C f zeta d zeta/zeta – z whole square = 1/2pi i sigma n=1 to infinity integral

over C fn zeta/zeta – z whole square D zeta.
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Now let us apply the Cauchy integral formula for higher derivatives okay from that it follows

that, the left hand side is f prime z, right hand side is sigma n=1 to infinity fn prime z, okay. So

fn prime z = sigma n=1 to infinity fn prime z by the Cauchy integral formula for derivatives if z,

and therefore  we can see that  the  series  can be  differentiated  term by term.  Now sufficient

condition for the uniform convergence of a series.

Like we have a uniform, like we have a Weierstrass M-test for series of real functions here also

we have a we have the Weierstrass M-test. So if mod of fn(z), if you take the series sigma n=1 to

infinity mod fn(z) series of complex function fz then if mod of fn(z) is <= mn for all n=1, 2, 3…



where Mn is independent of z in a region R and sigma n=1 to infinity Mn in convergent then

sigma n=1 to infinity fn(z) converges uniformly in R, so we have this result.
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And we can easily prove this like we prove in the case of series of real functions. So here we

have mod of Rn z = Rn z let us recall, it is the remainder after n terms of this series, so mod of

Rn z is mod Fn+1 z, Fn+2z and so on and this is <= mod of Fn+1z, mod Fn+2z and so on which

his <= Mn+1, Mn+2 and so on. Now, since the series sigma Mn=1 to infinity Mn is convergent

okay, Mn+1 Mn+2 + and so on can be made < epsilon, okay.

Suppose, you can say that the sum of the series say S, S=sigma n=1 to infinity Mn then we know

that for a given epsilon > 0 we can find n integer n0 depending on epsilon such that S-Sn, okay

mod of S-Sn is < epsilon for all n > r=n0. So this is we consider mod of sigma n=1 to infinity

Mn-sigma M=1 to n Sm okay < epsilon. So we are subtracting from sigma n=1 to infinity Mn the

sum of first n terms of the series, okay. So this is the thing but mod of Mn+1 + Mn+2 and so on.

Since Mn+1 and Mn+2 are positive we can write Mn+1+Mn+2 and so on.

So this  is  less than epsilon for all  n > r=n0 epsilon,  okay. So since the series  sigma Mn is

convergent Mn+1 Mn+2 can be made < epsilon for; by choosing n to be >= n0, the choice of n0.

Now, this n0 does not depend on any z, okay, it depends only on epsilon okay, so, because it has



come from the series of constant. So this series sigma n=1 to infinity fn(z) converges uniformly

in R.
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Now let us consider the geometry series. 1+z+z square+ z cube and so on. Let us show that it

convergences is uniformly to 1/1-z for 0 <= mod <= rho < rho < 1 but not for mod z < 1. Let us

consider the nth partial sum of this series, Sn(z)=1+z+z square and so on z to the power n-1; this

we know it is a geometry series so we can write it sum 1-z to the power n/1-z, okay. Now if mod

of z is < 1 okay then limit n tends to infinity z to the power n goes is = 0 hence, limit n tends to

infinity Sn(z)=1/1-z if mod of z is < 1. 

So this series converges point wise, okay. Hence the series converges point wise in the disc mod

z <1. Okay. It does not convergent uniformly in mod z <1, how? It does not converge; this is

because Rn(z). Okay, let us look at the Rn(z). Rn(z)=1/1-z f(z)- the sum of the first n terms

should be 1-z to the power n/1-z. And this is equal to z to the power n/1-z, okay. So Rn(z) is the

remainder after the n terms of this series. Okay. So this is z to the power n/1-z.

Now let us see, if you take real z to be real, okay let us if we take z to be real say z=x, okay and x

is  sufficiently  close  to  1  then  what  do  we  notice?  Then,  we  notice  that  Rn(z)  becomes

unbounded. What I am saying is that, Rn (z=z to the power n/1-z. Let us take z to be equal to x,

okay, z to be equal to x and say x is very near to 1, okay x is very near to 1, so then it is z=x we



will have x to the power n/1-x and when x is very near to 1 what will happen, Rn(x) will tend to

infinity, okay.

So Rn(x) will  become unbounded and therefore we can say that we cannot find any n0, we

cannot find any n0 independent of z such that mod of Rn(z) is < epsilon okay for all n >= n0 and

so the series does not converge uniformly in mod z < 1. Now however, if we take mod z <= rho

where rho is < 1 then what we notice is that, then mod of z to the power n is <= rho to the power

n, okay.

So what will happen, here the n+1th term you can see in the series, n+1th term is z to the power

n, so I am considering n+1th term so n+1th term the modulus of n+1th term is mod of z to the

power n which is <= rho to the power n and we know that the series sigma rho to the power n,

n=1 to  infinity  is  a  convergent  series.  This  is  the  convergent  series.  This  we can  prove  by

applying the ratio test or the root test.

If you to apply the root test then mod of rho to the power n raise to the power 1/n limit n tends to

infinity = rho, okay and rho is < 1. So the series sigma n=1 to infinity rho to the power n is a

convergent series therefore, by Weierstrass M-test we can say that the series 1+z+z square and so

on converges uniformly in the region 0 <= mod z <= rho, okay but not in mod z < 1. So this

series converges uniformly this series converges point wise in mod z < 1 but not uniformly in

mod z < 1. Let us take another example.
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Suppose we take the series sigma n=1 to infinity z to the power n – z n+1. Here let us find the

nth partial sum, so Sn(z)=z-z square z square-z cube and so on z to the power n - z to the power

n+1 and we can see these terms cancelling okay and what we get is Sn(z)=z-z to the power n+1.

Now if mod of z is < 1 then limit n tends to infinity z to the power n+1 goes to 0, okay. Hence,

limit n tends to infinity Sn(z)=z if mod z is < 1, okay. Now let us notice the following.

If you find Sn(z) for z=1, Sn(z) when z=1 we have Sn(z)=1-1, okay. So we get 0, okay. So

Sn(z)=0 for all values of n, n=1, 2, 3 and so on and therefore, limit n tends to infinity Sn(z)=0

when z=1, okay. So what do we notice, if we denote by f(z) the limit of Sn(z) as n goes to

infinity then we see that f(z)=z when mod of z is <1, okay. And f(z)=; when we take z=1 f(z)=0

when z=1, okay. So you can see from here that f(z) is discontinuous at z=1 because limit z tends

to 1 okay f(z)=1 okay we notice that this is not equal to S1 okay.

S1=0 and limit z tends to 1 Sz, Sz=z in every neighbourhood of z=1 okay, so this is equal to 1, so

this 1 not equal to 0 and hence, f(z) is discontinuous at z=1. Now, from here we can say, the

given series consistent of continuous functions at z=1. They are all continuous functions at z=1

but the some functions of the series is discontinuous at z=1 and therefore we can say that the 1 is

the point of non-uniform convergence of series, that is the series does not converge uniformly in

neighbourhood of f(z)=1, okay.



So  since  the  sum  function  is  discontinuous  of  the  given  series  of  continuous  functions  is

discontinuous at z=1 we can conclude that the given series does not converge uniformly in any

neighbourhood of z, z=1, okay. So this series does not converge uniformly in mod z < 1. Okay.
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Let us consider the series sigma n=1; now here again we can conclude that if instead of mod z <

1 we consider this region, okay. If we consider 0<= mod z <= rho where rho is the 1, rho is <1

then this series converges uniformly because, why because mod of z to the power n let us take

nth term, z to the power n+1 = mod of z to the power n * mod of 1-z okay. So this is = mod of z

is <= rho so this is <= mod z to the power n*1+mod of z which is <= rho to the power n*1+rho,

okay. So now this is let us take Mn, okay.

Now consider the series sigma Mn. So the series sigma Mn is sigma n=1 to infinity rho to the

power n*1+rho, okay. If we apply the ratio test here then rho to the power n+1*1+rho/rho to the

power n+rho, limit rho n goes to infinity. This will cancel with this and will get the limit as rho.

Now this rho is <1. So the series sigma Mn converges uniformly, okay. The series sigma Mn

converges; its convergent and therefore, the series sigma n=1 to infinity z to the power n-z to the

power n+1 convergences uniformly in the region 0 <= mod z <= rho, okay and where rho is < 1. 

So we can apply this Weierstrass M-test here to put the uniform convergence.
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Now let us consider this series, sigma n=1 to infinity sin n mod of z over n square, okay. So we

notice that here fn(z)=sin n mod of z/n square, okay. So, mod of fn(z)=mod of sin n mod of z/n

square.  Okay, now z is  a  complex number and mod of z is  a  real quantity  so this  is  a real

function, sin n times mod of z is a real function. And we know that mod of sin theta is <= 1 when

theta is real so this is <= 1/n square for all z belonging to c and n belonging to set of natural

numbers n, okay.

And so by Weierstrass M-test the given series convergent uniformly in the whole complex plane

because the series sigma 1/n square is a convergent series. So we can apply the Weierstrass M-

test  to  decide  what  the uniform convergence of this  series.  So we have proved the uniform

convergence of this series sigma n=1 to infinity sin n mod of z over n square by applying the

Weierstrass M-test.

In our next lecture, we shall discuss the power series. We have heard of power series for in real

calculus.  We have a power series here in complex also, so we shall  discuss that in our next

lecture. Thank you very much for your attention.


