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Hello friends, welcome to this lecture in this lecture we will continue our study of finding the n

linearly independent solution of x dash = Ax where a is n cross and n matrix. And in previous

class we have seen some examples  where we have n distinct  eigen values of the coefficient

matrix a and there we have find out n linearly independent eigen vectors. And hence we can

write down the general solution in the form of n linearly independent solution.

And we have seen that in the case when we do not have a distinct eigen values then we may or

may  not  get  n  linearly  independent  eigen  factors.  And  hence  we  may  not  get  n  linearly

independent solution of the form of e power lambda t * vector v. So, we generalize and then we

try to generalize we try to get the motivation from the scalar case that in the scalar case of

solving x dash = ax let me write it here.
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That x dash = ax our solution is coming out to be xt = e to the power at * sum constant c now we

have done this case that the first place of this constant. We have written that e to the power at and

let us say v is n cross 1 and we have seen that it is very nice if a coefficient matrix A has distinct



eigen values for distinct eigen values. This can be verified it will give you solutions n linearly

independent solution.

But in case when A has repeated eigen values then this may not work good and then we thought

to generalize this candidate that this candidate here. And we thought that it is possible to find out

a formula for e to the power at v n as cross . We have seen in previous class that this will work as

a solution in fact we have shown that x dash t = A e to the power At * v and this implies that this

is AX so X dash t will be A of X.

For any constant vector v here but e to the power At we have shown that it is nothing but power

series then it is At n/ factorial n n is from 0 to infinity. So, in this sense we simply say that this is

an infinity series in the powers of matrix A, and it is quite difficult to find out the sum of the

matrix sum of this infinite series. Then we will focus our attention on this vector v such that this

infinite matrix infinite series will be say truncated into a final many terms.

That is what we want to discuss in this lecture so what we have done in previous class.
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That in the case when we have say a k a number of linearly independent eigen vector which is

strictly less than n and then we have to look at the solution of the form e to the power At v. And

with the help of this we try to find out the remaining n-k linearly independent solution.



(Refer Slide Time: 04:06)

And we define e to the power At as a limit of this infinite series and we have shown that this

series is converse uniformly for all t norm of e to the power At is < = e of norm of At for each

fixed but arbitrary t. 

(Refer Slide Time: 04:20)

And we have shown that d/dt of e to the power At v = A e to the power At which shows that this

is actually e to the power At v is actually a solution for constant vector v here.

(Refer Slide Time: 04:35)



And to find out to simplify this e to the power At because using the infinite series formulation of

e to the power At is quite difficult to calculate. So, we look at this observation that e to the power

At can be written as e to the power A – lambda it* e to the power lambda it *v. So, here this we

are able to do because these two matrix commute. So, here we have shown that here we have

observe that e to the power A=B = e to the power A* e to the power B.

Or e to the power B* e to the power A. When this A and B are 2 commutative matrix it means if

AB = BA then I can write this in general it may not be true for arbitrary matrix A and B. So, here

since A – lambda I n lambda i commute then I can write e to the power At v as e to the power A -

lambda it e to the power lambda itv and also, we have shown that e to the power lambda it e is

nothing.

But lambda tv it means that e to the power Atv = e to the power lambda t * e to the power A-

lambda I t * v. So now we will focus on this and we try to find out the vector v such that this

matrix in fact e to the power A – lambda I t * v is basically I + A – lambda I t + so on A- lambda

I n t to the power n/ factorial n and so on * v. So, we will focus, and we will find v such that

infinite series can be truncated in to a finite terms.
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So, our strategy will be like this that will finding the general solution of 1 that is x dash = A of x

or equally finding n linearly independent solution of 1.In fact if we are able to find out any n

linearly independent solution of 1 then we can write down the general solution as well. Then we

have the following 2 possibilities 1 possibility is that A has n linearly independent eigen vectors

and hence we can write down n linearly independent solution.

Of the form e to the power lambda tv and in the 2nd case A has less than n linearly independent

eigen vectors then A has only k linearly independent eigen vectors. Then we have only k linearly

independent eigen solution of the form e to the power lambda t v this may happen when eigen

values are not distinct. So, it means that here the case is corresponding to the case when eigen

values are repeated eigen values, so we know focus on this case 2.
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So, here we may recall  a result  of linear  algebra that says that  the linearly independent  the

number of linearly independent eigen vectors correspond which we call as geometric multiplicity

cannot exceed the number of repetition of the corresponding eigen value that is a commonly

known as algebraic multiplicity that is AM > = GM. Let us try to understand this that we have a

matrix A then we have some eigen value lambda.

Suppose it is a repeated say k times suppose it is a lambda is the root which is repeated k times

then we call the algebraic multiplicity of lambda I is k so algebraic multiplicity of lambda i is

given  as  k.  The  number  of  reputation  of  this  root  is  your  algebraic  multiplicity  now

corresponding to lambda i just find out your number of linearly independent eigen vectors and

the  number  of  linearly  independent  eigen  vectors  corresponding  to  lambda  i  is  known  as

geometric multiplicity of lambda i. 

So, lambda i so geometric multiplicity is what the number of linearly independent eigen vectors

corresponding  to  this  lambda  i  and  that  we  call  as  G of  M geometric  multiplicity.  Now if

geometric multiplicity is = algebraic multiplicity then for each lambda i then we have n linearly

independent  eigen  vectors,  but  we  have  shown  that  in  this.  In  the  case  when  algebraic

multiplicity is strictly > geometry multiplicity and the result says that this algebraic multiplicity

is > = geometric multiplicity. 



In fact, if you remember this a matrix 1 1 0 0 1 1 0 0 1 here you have shown that algebraic

multiplicity of 1lambda 1 = 1 is 3. But geometric multiplicity corresponding to lambda1 = 1 is

only 1 so here algebraic multiplicity is 3 and geometric multiplicity is 1. Here we have seen that

there is only 1 linearly independent solution is available that is I think 0 0 1 that we can verify

again so here we have only 1 linearly independent solution. 

So, geometry multiplicity is 1 algebraic multiplicity is 3. So, here this is the result of linear

algebra this you can find out in any standard textbook of linear algebra then. So, it means that we

are in trouble when we have the case then AM is strictly  > GM. So, to find remaining n-k

solutions we consider only those eigen values of A for which AM is strictly > GM. So, let us say

that lambda is such an eigen value of A and find all vectors v for which A- lambda I v is != 0 it

means v is not an eigen vector of A corresponding to lambda but A – lambda i whole square * v =

0. 

So, it means that it is not an eigen vector but that it is a kind of a solution of A – lambda square x

= 0. So, for each this of vector v which is commonly known as generalized eigen vector we can

write down the expression for e to the power At v as e to the power lambda t e to the power A

lambda I to the v. This we have already shown now focus on this e to the power A- lambda i t so

this e to the power lambda t have written as it is now this is what this is written as let me write it

here.
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It is what e to the power A – lambda i t v so it is I + A – lambda I t + A – lambda I square t

square/factorial 2 and so on then if we write it this as that is v + A – lambda I tv + A – lambda I

whole square t square factorial 2 v and so on. So, it is basically e to the power lambda t so if it is

e to the power lambda t v. So, here if you look at if this is non 0 then we make that this term is 0

and if we make this term as 0 so remaining term will also be 10 to 0 simply goes to 0.

So, it means that this infinite series is now reduce to only 1st 2 term so that is what is the idea

here that here we simply find out e to the power A-lambda I t that is I* v + A – lambda t*v. And

since A-lambda square v e = 0 then we can verify that A- lambda I cube * v is also 0 in fact it can

be written as A-lambda I * A- lambda I whole square v now this is 0  so  A  –  lambda

applied on 0 is gives you 0.

And hence we can say that higher powers of A - lambda I 3 4 operating on v will give you value

0 so it means that this infinite series is now reduced to only 2 term that is v +t A – lambda i v = 0.

Now if you say that if v is such that A- lambda iv = 0 then it will reduce to only 1 term that is e

to the power lambda t *v and that will shows us e to the power At is nothing but e to the power

lambda tv and in that case v is known as eigen vector of A corresponding to the eigen value

lambda. 



So, here we have shown that if v is an eigen vector then it is reduces to e to the power lambda t *

c if v is not an eigenvector and we call it as a generalized eigen vector than it will contain a 1 at

least 1 more term to e to the power lambda t * v. So, here what we have shown that if we choose

v in a way. In this way then e to the power At v can be written as e to the power lambda t v+t A –

lambda I v.

And this will work as an addition solution of 1 and we do this for all such eigen value lambda of

a for which AM is strictly > GM and the idea is to find out the remaining AM- GM number of

solutions.
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And if we have enough number of solution by the previous step then we stop, and we write the

general  solution  in  terms  of  n  linearly  independent  solution.  But  if  we do not  have  enough

number of solution then we find out all vectors v for which this A - lambda I square v is non 0.

But the next higher power that is A – lambda I q v is = 0 and in this case your e to the power At

be will contain 1 more term that is t square / factorial 2 A – lambda I whole square v .

So, if this term is 0 then it will be reduce up to only these 2 term but if this term is non 0. And

next term is higher term is 0 then we have additional 1 additional term so e to the power At v is

now used to e to the power lambda t v + t times A – lambda I v + t square/ factorial 2 A – lambda

I square v. And we call this is as an additional solution of fun and we keep on repeating this until



we get n linearly independent solution that is for eigen value which have AM is > GM AM – GM

number of solution obtained by the given method.

So this is the criteria, let me summarize this you have a matrix a. And there we have some eigen

values say lambda 1 to lambda k and suppose there exists some lambda I for which your AM is >

GM then for this lambda I you perform the given a step and you find out the generalized eigen

vectors.  In  fact,  this  vector  is  also  known  as  generalized  eigen  vectors  and  you  find  out

generalized eigen vectors till that we have the GM number AM number of solution available.

We already have AM -; we already have GM number of solutions the remaining AM – GM

number of solutions we can obtain by the given method. It means that we need to find out a

generalize eigen vector AM- GM number of generalize eigen vector. 
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Now the guarantee that this method will work is given by the following a Lemma which we

assume without any proof. And this basically related to finding the Jordan canonical form of a

given  matrix  now  what  this  Lemma  says  let  us  try  to  understand.  Let  the  characteristic

polynomial of A have k distinct roots that is lambda 1 to lambda k with multiplicities n1 to nk

commercial respectively.



So, it means algebraic multiplicity of lambda 1 is n1 algebraic multiplicity of lambda 2 is n2 and

so on suppose that S has vj that is < nj linearly independent eigen vector with eigen value lambda

j. So, here algebraic multiplicity is nj but geometric multiplicity is only vj then the equation e-

lambda I whole square v = 0 at least 1 more independent solutions. So, it means that if we are

having only vj number of linearly independent eigen vectors.

Where vj is strictly > nj then the said equation A – lambda ji whole square v = 0 has at least 1

new independent solution that is vj+ 1 independent solution. Earlier we have only vj independent

solution now we have 1 that is vj+ 1 independent solution of A – lambda jI whole square v = 0.

So, more generally  if the equation A – lambda j  I  m v = 0 has only mj which is strictly  <

independent solution.

Then the equation A – lambda j I e to the power m + 1 v = 0 has at least mj+1 independent

solution. So, it means that here this system will have mj+1 independent solution out of which

you  can  say  that  is  already  obtained.  So,  we  will  chose  1  new  solution  which  is  linearly

independent solution to the previous 1. So, this Lemma is the guarantee that the above what we

have defined A will going to work.
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So, now let us take 1 example based on this procedure so example 1 find the solution of the

following initial value problem x dash = 2 1 3 0 2 -1 0 0 2 x and initial condition is given as at t



= 0 that is 1 2 . So, here 1st thing we need to find out since we need to find out the initial value

problem, so we need to look at the general solution and then we are to find out the values of

constant and with the help of initial conditions.

So, 1st first we find out the 3 linearly independent solution so far that we need to look at the

eigen values. So, if you will look at the eigen values since it is upper triangular matrix so eigen

values are nothing but the diagonal entries and if you look at diagonal entries are 2 2 2. So, here

eigen  values  are  2  with  a  algebraic  multiplicity  3  so  eigen  values  of  this  matrix  is  2  with

algebraic multiplicity 3.
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Now look at the eigen vector so to find out an eigen vector let us find out the solution of A – 2I V

= 0 so we simply say that we solve this A – 2I V = 0. And when you solve this, we will get that

v2 an v3 = 0 in fact we can solve this, and it is v2+ v3= 0 and v3 = 0 so v3 = 0 implies that v2 =

0 so we have only 1 arbitrary value that is v1. So, here v1 may take arbitrary value and we can

write down that v1 may be 1 0 0 and 1 solution.

We can obtain of the form of e to the power lambda tv that is given as x1t = e to the power 2 1 0

0. So, by the previous method we have only 1 solution of the form e to the power lambda t v, so

we need to find out the remaining 2, linearly independent solution for that we have to find out

they generalize eigen vector.
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So, here in this example A has only 1 linearly, independent eigen vector for repeated eigen value

that is lambda = 2. So, algebraic multiplicity is 3 and geometric multiplicity is 1 so AM is strictly

> GM so one thing we observed like this that AM > GM in this example. So, here we need to

find out the discuss method to find out the remaining 3 - 1 that is 2 linearly independent solutions

so for that look at the solution of A – 2I square U = 0.

So, if A – 2I U = 0 has say 1 solution than A – 2I whole square U must have 2 solution at least so

just calculate A – 2I whole square and it is coming out to be 0 0 -1 0 0 0 0 0 0. And u1 u2 u3 here

I am taking the liberty that A – 2I is square calculated in this way you please calculate so when

you look at the new 3 is = 0 u1 and u2 R between so there are possibility like 1 0 0 and 0 1 0 so

here we have 2 linearly independent solution of A- 2I square U = 0.

And here we choose a value which is not which is independent to your previous eigen vector

because here we had to put 1 more condition that is A – 2I u is non 0 so it means that the earlier

eigen vector that is 1 0 0 if we take than A – 2I u has to be 0 so we drop this and write down our

solution as 0 1 0.
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So, here we take the vector u as 0 1 0 so that A – 2I u is not = 0 and of course that is linearly

independent eigen vector and it satisfies A – 2I square u = 0. And with the help of this you know

solution 2nd solution next to t is written as e to the power At 0 1 0 now e to the power At has this

expression e to the power 2t e to the power A- 2I t 0 1 0 and now A – 2I is basically what this is I

+ A – 2I t + A -2I square factorial 2 t square and so on.

When you operate on v then this will give you v and this will give you some value and this there

onward it is 0. So, it will have only few term that is identity means 1 0 0 0 1 0 0 01 + t times A –

2I t basically is what you have already calculated.
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So, A – 2I is 0 1 3 0 0 -1 so 0 1 3 0 0 -1 0 0 0 and this* v when you simplify what you will get

you will get here the value e to the power 2 t1 0 so here this I is basically 1 0 0 0 1 0 0 0 1 + t

times 0 1 3 0 0 -1 0 0 0 * v and * e to the power 2t. Now let us calculate this for this will let us

write it t e to the power 2t and this is I + t times A – 2I * 0 1 0.

(Refer Slide Time: 25:26)

When you simplify it is written as e to the power 2t as it is this is written as 1 t 3t 0 1 -t 0 0 1 and

operating 1 is 0 1 0 to solve this you will get e to the power 2t * t 1 0. And that what we have

written as the 2nd solution x to t as e to the power 2t t1 0 and this is linearly independent solution

of x = AX. So, how you can check this, and this is a linearly independent solution that you can

easily check at a point t = 2 0.

If you look at the 1 st solution will be what e to the power 2t 1 0 0 and it is e to the power 2t t 1 0

if you put t = 0 you can see that x 1 0 x 2 0 are linearly independent. What is x1 0 here x10 is

basically 1 0 0 and x2 0 is basically is coming out to be 0 1 0 and you can see that this 2 are

linearly independent so x2t and x1t are also linearly independent now.
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But still we have only 2 solution because by the previous method we are having only 1 new

solution we have obtained. But we need 2 linearly independent solutions so we perform 1 more

iteration of the method and find all the 3 solution of 3 so look at A – 2I cube * W = 0 now A-2 I

cube is basically nothing but a 0 matrix * W1 W2 W3 =0 so here you can simply say that this

will have 1 more solution of the previous method.

That is in previous method that is in previous step we have 2 solution so here we will have 3

solutions so here we have solutions we can have 1 0 0 0 1 0. And 0 0 since we need to look at

that A-2I W is non 0 and A-2I square W is non 0 so we have to leave this 2 options. So, here we

take the solution as W as 0 0 1 so that A – 2I cube w is 0 but A- 2I square w is non 0 and A – 2I

w is also non 0 so here we take w as 0 0 1 and corresponding to w the solution is what.
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Solution is given as x3 t = e to the power 2t * e to the power A – 2I t * 0 0 1 and if  you  expand

this e to the power A – 2I t then it is nothing but I + t A -2I + t square / factorial 2 A -2I square

operating on 0 0 1. And when you simplify, I am not simplifying here I am observing that if you

simplify you will get e to the power 2t 3t – 1/2t square -t 1 so this will be your 3rd solution

corresponding to lambda= 2.

Now we have obtained 3 linearly independent solution corresponding to lambda = 2. So, we stop

our method and we can write down the general solution as.
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C1x1 t +c2x2 t + c3x3 t where x1 t is the form of e to the power lambda t * v and x2 and x3 t are

solution obtain with the help of generalize eigen vector. And here we can check that these are

linearly independent solution for that you simply put t = 0 and calculate x1 0x20 x30 and you can

see  that  these  are  linearly  independent  eigen  vectors.  We  can  write  that  xit  are  linearly

independent solution of equation 9 and given by the equation 4 5 and 6 respectively.

And using an initial condition we can fix our say constant c1 and c2 and c3 and in this case our

solution is conscience on coming out to be 1 2 and 3. In fact we can write it a solution as follows

same so x of t = c1 now e to the power 2t you can take it out and this 1 0 0 + c2 e to the power 2t

and here it is t10 + c2 +c3 e to the power 2t.And here solution is basically 3t-1/2 t square 3t – 1/2

t square and 2 –t it is –t. and 1 

So in initial condition is given as what initial condition that we look at initial condition is 1 2 1

so x of 0 is 1 2 1 so when you put t = 0 what you will get 1 2 1 – c1 1 0 0 +c2 0 1 0 + c3 0 0 .

And you can easily check that c1 is coming out to be 1 c2 is coming out to be 2 and c3 is coming

out to be 1 so putting c1 c2 and c3 values in the general solution.  You can write down the

solution of the initial value problem as e to the power 2 t and 1+5t-1/2tsquare 2-t and 1.

So, this is the solution of the initial value problem 3 so here by this example we have shown that

in case of a repeated eigen value how to find out the n linearly independent solutions here. Now

we to concept fundamental matrix solution so once we have n linearly independent solutions then

we can write down the general solution. And we can write down the general solution as this x of t

as.
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A linear  combination  of  x  dash  AT where  x  of  At  are  linearly  independent  solution  of  the

equation x dash = AT x then when we have n linearly independent solutions x1 to xn t.  We

commonly called this linearly independent solution as a fundamental set of solutions. Now here

we may have different choices of n linearly independent solution of equation 9 so we may have

different fundamental set of solutions.

So, fundamental set of solutions basically gives you a set off n linearly independent solution of x

dash = Atx. And once we have fundamental set of solutions then you can write down the general

solution in the form of fundamental set of solution and it is given as xt * c where xt is basically

what.
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Xt can be considered as a matrix whose columns are n linearly independent solutions off x dash

= Atx. And c is a column vectors c1 to cn it means that your any solution x of t is given as x of t*

c where x of t is basically n cross n matrix and c is n cross 1 where xt is a matrix whose columns

are x1t x2t and so on. It means that with the help of these n linearly independent solution we

form a matrix which we call as a matrix solution.

With the help of matrix solution we can write down the general solution as this xt = at*c so we

have a new definition. We say that a matrix of n rows whose columns are solutions of x = At I is

called  a solution matrix  this  xt  is  a solution matrix  because columns of this  matrix  forms a

columns of this matrix is basically solutions of x dash = At x then we define fundamental matrix

solution.

The only difference between the matrix  solution and fundamental  matrix  solution is  that the

columns are now linearly independent solutions of x dash = At x. So, it means a matrix x t is

called a fundamental matrix solution of 9 on I if its columns form a set of n linearly independent

solutions of x dash = A tx. So, it means that if columns form a fundamental set of solutions then

this matrix is a fundamental matrix solution. Is it okay?
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So, now let us consider the example here in this example we need to find out a fundamental

matrix solution of the system of differential equation x dash = 1 -1 4 3 2 -1 2 1 -1* x. So, here 1st

thing we need to absorb that what are the eigen values of this matrix here I am leaving it to you

to see that the eigen values are given as1 3 and -2. And please observe that these are all distinct,

so it means that corresponding eigen vectors are also linearly independent.

And we can find out like 1 as -1 4 1 v2 as 1 2 1 and v3 as -1 1 1 as linearly independent eigen

vectors corresponding to1 3 and -2.
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So, here we can find out the linearly independent solutions as e to the power t * -1 4 1 * e to the

power 3 t * 1 2 1 and e to the power -2t -1 1 1. So, it means that here this is your x1t and this is

x2t and this is your x3t so once you have x1 x2 x3 t these are linearly independent matrix having

this x1 t x2t and x3t as columns is not only a matrix solution. But it is also a fundamental matrix

solution because these 3 are linearly independent solution.
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So, here this xt = - e to the power t e to the power 3t -e to the power -2t 4 e to the power t 2 e to

the  power 3t  e  to  the  power  –2t  e  to  the  power  t  e  to  the  power  3t  e  to  the  power  -2t  is

fundamental matrix solution of the equation x dash = Ax where A is given by 1 -1 4 3 2 -1 2 1 -1.

So, here we obtained the fundamental matrix solution like this so with this we stop discussing of

this lecture.

And we will  continue discussion of about the fundamental  matrix solution in the next class,

thank you very much for listening us. Thank you.


