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Stability for Discrete Systems

Dear students, welcome to this lecture on the stability of discrete systems, so in this lecture we

will see some results on the stability of discrete system which are analogous to the stability of

continuous dynamical systems. 
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So, earlier we have seen the continuous dynamical system of the form dx/dt = A * x of t, where A

is a constant n cross n matrix, so the result, the x of t identically = 0 is the trivial solution of this

continuous system and it is also called the equilibrium point; equilibrium point of the dynamical

system, so the stability of the system at this equilibrium point was analysed using the eigenvalues

of the matrix A.

So,  the  result  was  if  all  the  eigenvalues  of  A has  negative  real  parts  then,  the  system  is

asymptotically stable and if any of the Eigen value have negative real part, a positive real part

then the system will be unstable and if or if the eigenvalues are purely imaginary in some cases,

we can see that it will be stable, so there are some special condition on that particular case where

the eigenvalues are imaginary.



So,  depending  on the  algebraic  and geometric  multiplicities,  we  can  decide  the  stability  or

instability of such systems, so here those results have been earlier seen while dealing with the

continuous dynamical systems. So, analogous to those results we can see some result in the case

of the discrete systems. So, let us consider the discrete system x of k +1 = A of k x of k for

various time instances we can let say k = k0 k0 +1 etc.

And it can be easily seen, if x of of k = 0 for all k and if we substitute it in the right hand side, we

will get x of k + 1 is also = 0, so we can conclude that the 0; x of k is identically = 0 for all k is a

trivial solution of this system; system one or it can be called the equilibrium point, the origin is

called the equilibrium point of this system. So, here A is a n cross n matrix and x of k belongs to

Rn for each value of k is the state variable.

Now, we will state the definition of the stability of the system at this equilibrium point, so here

the trivial solution is said to be stable if for any given epsilon that is > 0 there exist a delta

positive such that whenever the initial condition x of k0 is < delta, then the solution x of k lies

within the epsilon neighbourhood, so here we see that if this is the state space for example, in the

case of 2 dimension, let us say x = x1, x2, 2 variables are there.

Then for every given epsilon, 0 is the trivial solution, x1 is 0, x2 is 0 is the trivial solution of the

system then, for every given epsilon the radius of the circle is epsilon there exist a delta > 0, we

can find a circle of radius delta such that whenever the initial condition x of k0 is inside the delta

circle, then the solution x of k for all the values of k, afterwards so that will always lie within the

epsilon circle.

When we have take the discrete points because the solution is not a continuous one, x of k0 is x0

is a point and then next point is x of k0 + 1 that will be a discrete point, so if you connect all the

discrete points for each value of k, we will get a curve; we will get a discrete set of points all of

them will lie within the epsilon circle, so that is the definition of the stability of the system. In

addition to that stability, if you also have that x of k tends to 0 as, k tends to infinity.



So as,  k becomes larger and larger, the initial  point  if  you start,  then for each value it  will

approach the origin, x of k0 is starting point and x of k0 + 1 k0+2 etc., these point is finally reach

the origin, in the limiting case as, k tends to infinity then we say that the system is asymptotically

stable, so it is a similar definition that is the analogous to the continuous case. Now, we will see

the condition on the stability, condition on the matrix for the stability of this discrete system.

So, let us consider instead of the time varying system A of k, let us consider A of k is a constant

matrix A, then we have already seen in the previous lecture, the solution x of k = A to the power

k – k0 * x0.
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So, let lambda i; i = 1 to n be the eigenvalues of the matrix A, so if A is diagonalisable, then we

can find n linearly independent eigenvectors corresponding to these eigenvalues lambda i, so let

us say x1, x2, xn are the n linearly independent eigenvectors which satisfy the equation like this,

Axi  = lambda  i  xi  for  i  =  1 to  n  standard  definition  of  eigenvalues  and eigenvectors,  then

multiplying repeatedly, we can easily see that A power m xi = lambda i to the power m * xi for i

= 1, 2 up to n.

So, this is for any positive integer m satisfies and because we have n linearly independent vectors

in Rn, it will form a basis in Rn, so any vector can be written as a unique linear combination of



the eigenvectors, so initial condition x0 is a vector in Rn, so it can be written as c1x1 + c2x2 etc.

cnxn as given in equation 4. 

(Refer Slide Time: 09:04)

So, substituting that initial condition in the expression 2 that is x of k is A to the power k – k0 *

x0, so in the place of x0, if you substitute equation 4, we get the expression like this because A

power m xi = lambda i to the power m xi, so we can substitute using this, we get the expression x

of k to be like, now we take k larger because we are interested in k tending to infinity, so we take

k is > k0 and further it tends to infinity.

And when we have k – k0 always positive and if the eigenvalues are such that  modulus of

lambda i is > 1, even if one of the eigenvalue have modulus > 1, we can easily see that it will

tend  to  infinity  lambda  for  example,  if  lambda  1  is  >  1,  then  its  positive  power  will  keep

increasing and then it will tend to infinity, it implies that x of k will tend to infinity as, k tends to

infinity.

So, for the stability condition we need that the modulus of the eigenvalue lambda i all of them

has to be <= 1, so if the modulus is < 1, strictly < 1, we can easily see that the modulus of

lambda i to the power any positive number, it will tend to 0 as m tends to infinity, if this is < 1,

strictly < 1, so we can see that if all the eigenvalues have the modulus strictly < 1 or if they lie

within the unit circle.



If we take the unit circle in the complex plane and if all the eigenvalues lie within the unit circle

then  we say  that  the  system is  asymptotically  stable  and if  the  modulus  of  the  any  of  the

eigenvalue = 1, we can see that this that particular term is always a constant, if we take modulus

here and then if the modulus = 1, a particular term is constant and if the remaining eigenvalues

are inside the unit circle, the remaining terms will tend to 0.

So, we can say that the modulus of x of k, it may not converges to 0 but it will remind a bounded

value because C1 is; C1, C2, CN are bounded values, so modulus of x of k will be bounded

provided the modulus of lambda i or any some of the modulus of the eigenvalues are 1, so in that

case we say that it is stable here.
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So, similarly in the case that A is not diagonalisable we will get the Jordan canonical form, so in

that case instead of n linearly independent eigenvectors here, in the diagonalisation case, we will

get n linearly independent eigenvectors but in the case of the non- diagonalisable matrix, we will

get the linearly independent eigenvectors, the number of linearly independent eigenvectors will

be strictly < n.

So, we will be able to find the generalised eigenvectors and then we get a basis consisting of

eigenvectors  and generalised  eigenvectors  in  the space  Rn,  then the  initial  condition  can  be



written as the linear combination of eigenvectors and the generalised eigenvectors and the proof

will be similar, once we write the solution x of k in the form of equation 5 using eigenvectors as

well as generalised eigenvectors.

Then, we will get the similar result that if all the eigenvalues lie within the unit circle, it will be

an asymptotically stable and if any of the eigenvalue lie outside the unit circle, it will be unstable

etc. so this result is similar. 
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Now, stabilising using feedback, so let us consider the dynamical system given in equation 6

here, if the matrix A is such that the eigenvalue, some of the eigenvalue lie outside the unit circle,

then the system is unstable now, in order to make the system stable by applying a control term,

so we can consider the control system x of k +1 is A * x of k + B * u of k, where u of k is the

control variable for various values of k, k is initial condition is k0 k0 + 1 etc.

Now, in order to make the system say asymptotically stable, so we want that x of k should tend

to 0 as, k tends to infinity is the requirement for asymptotically stable system, we have to select

the control u of k in a special manner, so that the system becomes stable or asymptotically stable.
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So, this procedure is again similar to that of the continuous case as we have seen in the feedback

control lecture that we can find a feedback control u of k such that u of small k, it is some matrix

K times x of k, where k; this is a m cross 1 matrix and this is n cross 1 matrix, so we will get m

cross n matrix, the k matrix is m cross n and so we have to find a m cross n matrix K such that

A+ BK has all the eigenvalues within the unit circle.

So that the resulting system x of k + 1 is; so, x of k + 1 is Ax of k + Bu of k and if you substitute

u of k to be K times; capital K times x of k, so we get a simple system like this and if the all the

eigenvalues of A+ BK has a modulus < 1 or they lie within the unit circle, then we can say that

the system is stabilised, in that case x of k will converge to 0 as, k tends to infinity and the

procedure is exactly similar to the case of continuous system which we have seen in the feedback

control.
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Now, another  analogous  theory  that  is  we  have  seen  the  Lyapunov  stability  theory  for  the

continuous system and if you have dx/ dt = f of x of t, where f of 0 = 0, f is a non-linear function

such that f of 0 = 0, this will imply that x = 0 is equilibrium point of the given continuous

system, so to analyse the stability  of the system at this  equilibrium point,  we have seen the

Lyapunov theory that is  if  there exist  a Lyapunov function V that  is v is a positive definite

function that is V of x is strictly positive for all x non-zero and V of 0 = 0.

And the derivative of V with respect to is negative definite, then the system is asymptotically

stable, so that was the Lyapunov stability theorem for asymptotically stability and if dV/dt is

negative  semi-definite,  then the system is  stable,  so this  result  we have seen in  the stability

lectures. Now, we will see a similar result for the discrete system, so a function V of x of k is

called the Lyapunov function, if for some r > 0, the radius r > 0, V of x of k is > 0.

And V of 0 = 0 for any sequence x of k within this circle of radius r, so let us for simplicity

assume that the vector x is in r2, x is x1, x2, x of k is x1 of k, x2 of k, so these are the; this is a

state space now, if you take your radius r, a circle of radius r and if x is within this circle x of k,

then V of x of k, so we will get the surface, x1, x2 is this and then the value of the V; V of x of k,

so if the radius of the circle is r in the x1 x2 plane.



Then corresponding to each value of x1 x2 within this circle, we will have a positive definite

function so which represent the surface V of x1 x2, the surface is given by V = V of x1 x2.
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Within the circle of radius r, so if there exist a r satisfying this condition, we say that it is a

Lyapunov function and will see the result on the stability of the system, autonomous system, so if

we consider x of k + 1 is a non-linear function k and x of k, then it is called time varying system

that  is  non-autonomous  system and  so,  this  is  non-autonomous  and  because  k  is  appearing

explicitly in this equation.

And if you have the equation like 9, x of k + 1 is f of x of k, where k does not appear explicitly

but it can appear in as a part of x of k, then it is called the autonomous system, so the system here

9, actually it is 9, the system 9 is stable if the trivial solution, the system 9 is stable at the trivial

solution, if there exist a Lyapunov function as defined earlier and del V of x of k that is the

increment; increment of the function V, okay at x of k.

So that is given by V at x of k + 1 – V at k, the increment if it is <= 0, in other words V is a

decreasing function with respect to the variable k here, so if this happens then we say that the

trivial solution is asymptotically stable and if it is <= 0 then, it is a system is stable, so it is

analogous to the continuous case, in the place negative semi-definite, we have that the increment

is <= 0.



And in  the  place  of  negative  definite,  negative  definiteness  of  the  function  V, we have  the

increment is strictly < 0 for any sequence, so basically both of the conditions are very much

similar to that of the continuous case so similarly, the proof is; proof of this Lyapunov theory is

exactly similar to that of the continuous case, only thing is in the continuous case, we will have

the continuous function x of t.

And in the discrete case, we have the discrete sequence, the points x of k at discrete points, so the

result is similar, the proof is also similar here. 
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So, now let us see a simple example to illustrate the theory, consider this system x1 k + 1 = - x1

of k + x1 of k x2 square of k and x2 of k + 1 is x2 of k x1 square – x2 of k for various values of

k, integer values of k and it can easily seen that when x1 and x2 both are 0, then it satisfies this

equation, therefore 0 0 is the trivial solution or the equilibrium point of the system. So, if we

consider the Lyapunov function, V of x of k that is V of x1 x2 is x1 square + x2 square for each

value of k.

Then it is easy to see that it is positive definite strictly > 0 if x1, x2 is not the origin and at the

origin, it is 0 value and the increment del V x of k, if you substitute directly that is V of x of k +

1 is +x1 square k +1 + x2 square k + 1 -V of x of k is x1 square k – x2 square k, so this



expression from the given equation if  you substitute  for x1 k +1 and x2 k + 1, we get this

expression.
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And further by simplifying, we get del V of x1 x2 is strictly < 0, provided these quantities are

positive that is x2 square is < 2 and x1 square, if it is < 2, then we will get strictly < 0 sign or in

other words, if x1 and x2 lies within the circle of radius 2, then also we can say that the right

hand side is strictly < 0, so according to the definition, the value r, we have seen that if there

exist a circle of radius r in which this conditions are satisfied.

Then, the system is asymptotically stable, so this illustrate the asymptotically stability of this the

Lyapunov theory, okay, so with this  we conclude the stability  concept for the time invariant

system for the discrete dynamical system, okay, thank you.


