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Observability of Discrete Systems

Dear students, welcome to this lecture on the observability of discrete dynamical systems, so in

this lecture, we will see the definition of observability and some conditions on the observability

of discrete systems, so this is analogous to the continuous systems or the observability and the

condition of observability of continuous systems, only thing is the; there will be little changes

for; so as to deal with the discreteness of the system, okay. So, the procedure will be almost same

like a continuous system with little, there is a small change.

(Refer Slide Time: 01:15)

So, let us consider the discrete control system given by equation 1 that is x of k + 1 = A of k x of

k + B + k u of k, so A is n cross n matrix, A of k is n cross n and B of k is n cross m matrix and x

of k is the state variable and u of k is the control variable in the spaces, x of k belongs to Rn and

u of k belongs to Rm for each value of k, k is ranging from k0, k0 + 1 etc. k0 + n, so these are

the time instances in which we considered the dynamical system.

(Refer Slide Time: 02:22)



And the observation of this system is y of k = C k x of k, so now the definition of observability is

similar to that of the continuous system except the discreteness of the system, so the system

given by 1 and 2 is said to be observable,  if  the knowledge of the control  u of k for these

instances, k0, k0 + 1 up to k0 + N - 1 and the knowledge of the observation y of k, which is for k

= k0 up to the last stage k0 + N.

So,  this  knowledge is  sufficient  to  obtain  the state  of the system x of  k  for  all  values  of k

uniquely, so instead of saying that x of k should be known uniquely for all instances, we can also

say  that  the  observability  means  if  the  initial  state  x  of  k0  is  obtained  uniquely  from the

knowledge of u of k and y of k, then also the system is observable because we can see that the

solution of the equation 1 is written as x of k = phi of k k0 * x0 + the summation as given here in

the equation 3.

Where we have seen in the previous lecture that for phi of k k0 in the general case of the time

varying system, it is A of k -1 A of k -2 etc. the products A of k0, so with this notation, we write

the solution 3 of the control system 1, so if you know x0 that is x of k0 = x0 uniquely, then from

equation 3, we can get x of k for all values of k that is k ranging from k0 to k0 + N, so that is the

observability of the system, the definition of observability of the system.
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Now, we will see from equation 2, y of k = C of k * x of k, where x of k is given by this

expression, so the if you multiply equation 3 both sides with the C of k, we get to the equation 4

that is the observation in terms of this summation and taking this summation term to the left hand

side, we will get y of k - summation = C of k phi of k k0 * x0, so this is for k = k0 +1 etc. k0 +

N.

Now, we can write; give the notation y bar of k for the left hand side of the equation 4 because

all these quantities are known to us, y of k is the observation, u of k is the control and for all the

instances, the matrices B, C all are known to us, so we can say that the left hand side is known

and we denoted by y bar of k for these instances k = k0 +1 etc. k0 + N.
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So, from that equation, we get y bar of k = C of k phi of k k0 x0 from the previous slide, so

multiply both sides by this matrix, it is phi transpose k k0 * C transpose k and then using the

summation from k0 + 1 to k0 + N, we get to this equation 5 here, okay, multiplying by this

matrix and then using the summation both sides, we get this expression here, x0 is a constant

vector, so we can write it outside the summation as given in the equation 5.

Now, let us call this square bracket summation as the matrix M, so let M be summation k ranging

from k0 + 1 to k0 + N of phi dashed C dashed C * phi of k k0 this matrix, so we can note that the

size of the matrix, it is a square matrix, it is a n cross n matrix because A is a n cross n matrix, so

the state transition matrix is n cross n and the product will give finally n cross n matrix and it is a

symmetric matrix.

Because we can see that phi dashed C dashed is 1 matrix and its transpose, so they are multiplied

and we are taking the summation over a symmetric matrix, so we get M as a symmetric matrix

here.
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The above n cross n symmetric matrix is called the observability Grammian matrix, the matrix M

and we can write from the equation, if you denote the equation 5, the left hand side if you denote

it by vector v, then we can write the equation 5 as M * x0 I = the vector v, so this can be done for

all systems with irrespective of what the matrix A, B, C etc. of the dynamical system but the

system will be observable in the time instances k0, k0 +1 etc. if and only if the observability

Grammian matrix M is non-singular.

So, for observability, we need the condition that the matrix M is non-singular, so this is exactly

similar to the continuous case, the continuous case what we have earlier seen is; if the initial time

is t0 on the final time is capital T, then the observability Grammian for the continuous case is

given by phi dashed t t0 * C dashed of t * C of t * phi of t t0 dt, so this matrix is M matrix for

observability Grammian matrix for the continuous case.

So, if M is non-singular, then the system is observable for the continuous case now, for the

discrete case we have a similar result.
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And we can prove it in a similar fashion, so now let us consider; see the sufficient see of the

condition, if M is non-singular, it is invertible, so directly we can see from equation 6, we will

get x0 uniquely, the initial condition x0 is obtained uniquely by taking the inverse, M inverse v is

x0, so according to the definition of observability if the initial condition is obtained uniquely,

then we call the system observable.

So,  sufficient  condition  is  proved directly  like  this  one,  now the  necessary condition;  if  the

system is observable, then we have to show that the matrix M is non-singular, so let us assume

that M is singular, so in that case there will be a vector beta in the space Rn and beta is non-zero

such that M * beta = 0 because M is singular, so then we will get beta transpose M * beta is also

= 0 from that expression.
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So that implies if you substitute the value of the matrix M, we will get summation k = k0 + 1 to

k0 + N, the definition of M as we have seen here, this expression, so we multiply the left with

beta dashed and in the right with beta, so we get this expression, summation k0 + 1 to k0 + N

beta dashed phi dash C dash C phi * beta = 0. Now, we observe that this 3 terms, beta dashed phi

dashed C dashed and C phi beta, so these are transposed to each other.

So, it means that this vector, it is a row vector, it is a column vector and the product will give the

norm of this vector, so norm square of C of k phi of k k0 * beta norm square summation = 0 and

inside the summation, all the terms are positive therefore, each term separately should be = 0, so

we get C of k phi of k k0 * the vector B beta = 0 for all values of k from k0 k0 +1 etc. up to the

last stage.

So, now the system observability definition is using the knowledge of the control u of k and the

observation  y  of  k,  if  you are  able  to  get  the  initial  condition  uniquely, then  the  system is

observable, so let us assume that the control u of k is 0 for all k, so for using the observability

definition let us say u of k is 0 for all k and the initial condition x0 is C times beta, where C is

any constant.

Because we know that beta is non-zero according to the assumption in the here, we assume that

M is singular therefore, there exist a non-zero beta, so beta is given to us and we assume that



initial condition x0 is C times beta for some value of C, then from this last equation 7, we will

get that C of k phi of k k0 * C times beta is also = 0 for all value of k, so this implies that if x0 is

0 that is if x0 is 0, then C of k phi of k k0 * 0 is 0.

And for nonzero value of beta that is also 0, so for various initial condition, we get the same

observation this y of k = C of k phi of k k0 * x0 because u is 0, we get the observation y to be

like this and for let us say, 2 different initial condition, 0 and beta we get the same value y of; this

is identically = 0 for all values of k, so this is a contradiction because the initial condition should

be obtained uniquely for a given observation, so that is violated here.

So, it means that the beta cannot be non- zero, it has to be 0, if the system is observable, so based

on that we say that the matrix M has to be non-singular otherwise, we will get a contradiction, so

this proves the result that the necessary and sufficient condition for the control; observability of

the system 1 and 2. So, now we will see a simple example to illustrate the observability.

(Refer Slide Time: 15:38)

So, consider the system, x1 of k + 1 = - x1 of k + k times x2 of k, here x1, and x2 of k + 1 = 2

times x of k + u of k, here u of k is the control variable and x1, x2 are the state variable, x of k is

x1 of k x2 of k belongs to R2; R2 is a state space and u of k is a single function, so it belongs to

R for each value of k, so the control space is R, state spaces R2 here and the observation y of k is



given by x1 of k – x2 of k, this gives the observation for the values k = 0, 1, 2, 3 up to the last

instance k suffix N.

Now, to test the control observability of the system, we can utilise the observability Grammian

matrix, so let us take the simple case where the final instant is 2, initial time is 0 and final time is

2, so for this we test the observability of the system.

(Refer Slide Time: 17:11)

So, here in this case, A of k is given by -1 k 0 2 and B matrix is 0 1, C matrix is 1 -1 and so the

state transition matrices phi 1, 0 and phi 2, 0 to be obtained because for the M matrix, we need

the formula that k ranges from k0, so if you see the M matrix here, k varies from k0 + 1 to k0 +

N; k0 + N of phi k, k0 dashed and C dashed of k * C of k phi of k k0, so this we have to

calculate, so in this case k0 is 0 and N is 2.

So, we have to find from 1 to 2 here, that is k starting from 1 and 2, there are only 2 terms we

have to calculate, so we have to obtain time this terms, here when we be put k = 1 and k0 = 0, we

will get first term is phi of 1, 0 that is phi dashed that is A of 0 that is phi of 1 0, according to the

definition of phi k k0 is A of k -1 A of k -2 etc. A of k0, so in this case, k is 1 and k0 is 0, so we

will get only A of 0 that is only term for this one.



Similarly, phi of 2, 0 according to this is A of 1 * A of 0, so from here when we put k = 0 and 1,

we will get this 2 matrices as the state transition matrix part of that.

(Refer Slide Time: 19:33)

Then M is calculated by this expression and by substituting the appropriate matrices, we get the

M to be non-singular because the determinant is non- zero, so the system is observable.

(Refer Slide Time: 19:51)

Now, let us consider the following, the state transition matrix is given by phi of k k0 is A k -1 etc.

A k0 according to the definition, then the transpose or when we write phi of k0 k in the previous

lecture, we have seen the definition of phi of k0 k is the inverse of phi of k k0, so it is given by A



inverse k0 A inverse k0 +1 etc. A inverse k -1, the inverse of the previous step, so and if you take

the transpose of this, we get A inverse k -1 and its transpose.

Then A inverse k -2 transpose etc. A inverse k0 transpose, so this we denote it by psi of k k0, the

notation for the right hand side of 9 is denoted by psi of k k 0, so now let us consider the 2

systems; x of k +1 = A of x x of k is one system and another is y of k + 1 is A inverse of k

transpose * y of k, k is ranging from k0, k 0+1 etc. and maybe the last is k0 + N, so we see that

the state transition matrix of equation 11 is given by equation 8 here.

Because of the matrix A, similarly, the state transition matrix of equation 12 because of this

matrix, the first term should start with k - A inverse k -1 transpose and etc. the last term should

be A inverse * k is A inverse of k0 transpose, so the psi k k0 is the state transition matrix of the

equation 12 here and from this equation, we can easily see that psi of k k0 is nothing but phi of

k0 k transpose that is seen from equation 9 and 10.

So, we can see that the relation between the state transition matrix of 11 and 12 are given by this

expression, psi of k k0 is phi of k0 k transpose.
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So, this we can utilise in the following way.
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Now, let  us consider the 2 systems, x of k +1 is  A of k x of k + B of k * u of k and the

observation y of k is Ck xk that the usual system which we have consider earlier now, we will

consider another system x bar of k +1 = A inverse k transpose * x bar of k + C bar of k * v of k

and the observation for this system is y bar of k = B bar of k * x bar of k, so here this x and x bar

directly they do not have any relation.

So, it is a simply a notation for a different system and similarly, this y and y bar, they do not have

direct relation but these are 2 different systems observations, y is observation of system 14 and y

bar is observation of system 15. Now, let us select this C bar to be = C dashed of in the equation

15, we select the matrix C bar as C bar of k = C dashed k +1 and B bar of k is B dashed of k – 1.

Because we know the matrices A, B and C so, in terms of A, B, C we are writing the matrices

this B bar, C bar etc. so now we can easily verify that the controllability condition of system 14

is same as the observability condition for equation 15.
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Because we can see that the controllability of equation 14, so that implies and implied by the

matrix summation i = k0 to k0 + N – 1 of phi of k0 i +1 B of i * B dashed of i * phi of k0 i +1

phi  dashed,  so this  expression it  is  non-singular,  this  is  called  the controllability  Grammian

matrix and if this matrix is non-singular, this system is controllable and if this is controllable, this

is non-singular.

So, we have seen it in the previous lecture, so this condition is same as so, now this implies that

this = summation i = k0 to k0 + N - 1 and this gives psi of i + 1 k0 dashed, so earlier we have

seen that phi and psi have the relation like this, phi, psi of AB is phi dashed of BA, so we get this

relation and B of i so, according to this one, we have B dash of i is B bar of i+1, so we get here B

of i is nothing but the B bar dashed of i + 1.

And B dashed of i is B bar of i + 1 and phi dashed k0 i + 1 that is nothing but psi of i +1, k0, so

this expression we can easily see that this is nothing but the observability of the equation 15, by

seeing the observability Grammian matrix, we can see that it is the same, so we get the result, the

controllability  of  14  implies  observability  of  15  similarly,  observability  of  14  implies  the

controllability of 15 and vice versa, both sides.

So, this 2 systems are called the dual systems, the 14 and 15 are called the dual system and this

result  is  called  the  duality  theorem,  okay  this  one  is;  so  this  is  similar  to  the  case  of  the



continuous time systems. So, in the continuous case we have seen that if we take x dot = Ax +

Bu and y of t = C of t * x of t, this is the control system and the observation, then the system x

bar dot = - A transpose x bar + C dashed of some control v.

And y bar of t = D transpose of t * x bar of t, so the first system and second system are dual to

each other, the controllability of one, this equation 1 implies the observability of this equation 2

etc. vice versa, so this duality theorem is similar to the duality theorem for the discrete system

here and so, using this we can derive similar conditions as in the case of the continuous systems.

So,  using  this  result  we can  also  observe  that  the  observability  of  the  autonomous  system;

autonomous discrete system.

If A, B, C all of them are constant matrices, so we can conclude that the rank of C, CA, C square

A, C, sorry, okay, so the condition, the rank C, CA, CA square C A n – 1, if it = N, then the

system is observable or if the system is observable, then the rank of this matrix has to be N, so

this can be proved using the duality theorem for the discrete system, so because we know that the

controllability of the equation 15 is given by the rank of B, AB, A power n – 1 B = n.

When AB are constant matrix, this is a condition, so using the controllability and observability

relation  of the dual  system,  we can prove that  the observability  of equation  4 will  give the

condition for the controllability of equation 15 and similarly, the controllability of equation 15

will give the observability condition for the equation 14, so that will turn out to be this condition,

so with this we close the lecture on the observability and the relation between observability and

controllability of the dual systems, so thank you.


