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Dear students, welcome to the third lecture on the optimal control, so in the previous lecture, we

have seen the problem of finding the optimal control of 1 and 2, so we considered the system

dx/dt = f of x of t u of t t; u of t where x is the state variable and u is the control variable and the

performance index to be minimised or maximised is given by the expression J1, which is = the

function x of capital T, t + integral t0 to capital T f of xu t dt.

And here, capital T is the final time and t0 is the initial time and our aim is to minimise or

maximise the expression J under the constraint given in the equation 1, so last time we have seen

the necessary condition which is Euler Lagrange equation is given by del L/ del x – d/ dt of del

L/ del x dot = 0 and del L /d el u = 0, this is the fourth equation and the boundary condition to

solve this equation is given by the del J should = 0 which is the necessary condition for the

minimisation or maximisation problem where del denote the variation.



The variation; first variation of J = 0 is the necessary condition so here, del J = 0 implies the

value of the L at the final time t into the variation of capital T + del L/ del x dot transpose * del x

dot evaluated at final time t should be equal to 0. 
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Here, L denotes the Lagrangian function given by this expression, L is a function of x x dot u and

the Langrange multiplier lambda and t and which is given by this expression, capital F function +

del S/ del x transpose * x dot + del S/d el t + lambda transpose, the Langrange multiplier is a

vector function and so lambda is the column vector and lambda transpose is the row vector, the

Langrange multiplier and it is multiplied by small f of the xu – x dot function, okay.

All these are evaluated at the optimum value x star u star etc. so in general, L is a function of all

these variable; x, x dot u lambda etc. and the Hamiltonian H is defined by capital F function +

lambda dash times small f function therefore, the Lagrangian L in terms of the Hamiltonian H is

given by this expression which can be easily seen from the previous step. 
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Now, the condition which was the Euler Lagrange equation 3 and 4, if you convert it in terms of

Hamiltonian H is given by this  expression, del L/  del u = 0 same as del H/ del u from the

previous expression we can easily see this one from here and del H/ del x, it should be x here, = -

lambda dot that is the seventh equation, del H/ del lambda = x dot is the equation which is

already given, del x/; del H/ del lambda, we can see from here.

It is nothing but this function small f, so the equation 8 is nothing but the equation given, x dot =

small  f  which is  the equation 1 itself  okay, so already, so this  3 expressions along with the

boundary condition, H + del S/del t evaluated at capital T * the variation of capital T + del S/ del

x - lambda evaluated at capital T * variation of the final position x suffix t, so this we have not

proved in the last lecture.

We have to prove that the boundary condition given by 5 in terms of capital L, if you convert it

into by del u = 0 is the fourth equation and the boundary condition to solve this equation is given

by the del  J  should be equal  to  0 which is  the necessary condition  for the  minimisation  or

maximisation problem where del denote the variation. The variation; first variation of J = 0 is the

necessary condition.

So, here del J = 0 in place the value of L at the final time t into the variation of capital T + del L/

del  x dot transpose * del x dot  evaluated  at  final time t  should be = 0,  here L denotes the



Lagrangian function given by this expression, L is a function of the x x dot u and the Lagrange

multiplier lambda and t and which is given by this expression, capital F function + del S/ del x

transpose * x dot + del S/ del t + lambda transpose, the Lagrange multiplier is a vector function.

And so,  lambda is  the column vector  and lambda transpose is  the row vector, the Lagrange

multiplier and it is multiplied by small f of the x u – x dot function, okay all these are evaluated

at the optimum value x star u star etc. So, in general L is a function of all this variable; x, x dot,

u, lambda etc. and the Hamiltonian H is defined by capital F function + lambda dash times small

f function.

Therefore, the Lagrangian L in terms of the Hamiltonian H is given by this expression which can

be easily seen from the previous step. Now, in the terms of capital H is given by 9, so this we

have to prove it and we will prove it as a theorem.
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So, first the given condition is this one, L evaluated at capital T, this is a correction, it should be

capital T * del of capital T + del L/ del x dot transpose * del x dot at evaluated at capital T that is

our condition 5, so this condition 5 we want to show it to be equal to the condition 9, so let us

take the condition; the boundary condition in terms of L as given here. Now, we can easily see

this expression, del x suffix t = del x of capital T + x dot of capital T + del x dot of capital T * del

t.
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So, this we can see in the following way, so if we consider the initial condition is; let us say t0 is

this one and x0 is this expression, so that is initial condition and let us say this is our optimal

solution, x star of t and this is the variation of this thing, so it is x star of t + the variation in the

function x; x of t. now, let us say this is the time t and this is the variation in t; t + delta t because

we are; the t may not be a fixed value, it also has the variation.

The final position is not also a fixed value,  it  can have a variation,  so here this  is the final

position for x dot and the final position for the variation of x star; x star + del x star is this

expression, now we can see here this expression and this particular point, if we take, so this is the

variation in x of capital T is this expression, x suffix capital T and the next one is x of capital T +

del x of capital T.

The variation in this expression that is different, this expression is this particular point and there

is another thing which is x suffix T + del x suffix T that is the final position of x star is x suffix T

and x suffix T + del x suffix T is the actual final position of the incremented function x star + del

x star, so we have 3 values here and from here, we can easily see this expression, you can see

that del x suffix T = del x of T, the variation in x of T + the point A is the final position of x star.



And the point B is the incremented position of the x star at capital T that is x of capital T is this

position and the incremented value is x + del x of capital T and this x suffix T is the final position

and the final position of the x + delta x function is here, so C, this MC or CM is nothing but x

suffix  T  and  its  increment,  del  x  x  suffix  T  is  given  by  this  one.  Now,  we  can  see  that

approximately, the tan of this angle = BC is this height.

And delta t is from here to here, the increment in capital T, so BC/ delta T is the tan theta; tan of

this angle but that is nothing but the slope of this curve at the capital T position that is x of T +

del x of T, its derivative evaluated at capital T is the slope of this tangent and that is = tan of; tan

theta which is BC height/ delta capital T, so that is the expression, so tan theta is nothing but x

dot at capital T + del x dot at capital T.

And BC is nothing but del xt, from here we can see, del s suffix T - del x of capital T and divided

by del capital T is given, so from this expression keeping del x suffix T in one side, we get this

expression, del x suffix T; capital T is del x of capital T + x dot of capital T + del x dot capital T

multiplied by del capital T. Now, by neglecting the second variation del x dot of T * del T, the

product of 2 first variation we omit.

And keeping only the first variation, we get bill del x capital T = del x suffix T and bringing it to

the left hand side, we get the x dot at capital T * del T, okay approximately equal, by neglecting

the second variation, so substituting this del x of capital T in the expression of the boundary

condition  in  the equation  10 and converting  it  into the H value,  we will  get  this  following

expression.

So, first L at capital T * del capital T is there + del L/ del x dot * del x dot capital T, this del x

capital T we are replacing it with this expression, so will get L - del L / del x dot transpose * x

dot of T, from here we will get this expression. See from here, we can see that del x of capital T

= x dot of capital T * del T that is substituted here plus the remaining term del L/ del x dot and

del x of small t is substituted here, so we get this expression 11.
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And now, converting L in in terms of H as shown in the previous slide here, L in terms of H

equation is given here and substituting in this equation 11, we get the equation 12 here directly

because L = H + del S/ del x transpose etc. and del L/ del x dot from here, we can see that it is

nothing but del S/ del x transpose + - lambda dashed here, okay from this expression. Now, L

evaluated at capital T is similarly this expression, L – del L/ del x dot * x dot T, if you substitute

in terms of H, L evaluated at capital T - del L / del x dot * x dot is in terms of H is given by H at

capital T + del S/ del T evaluated at capital T.

So that we can see from the previous equation, so substituting this expression in the boundary

condition, we get the equation 12, so this is the proof that the boundary condition 5 is equivalent

to the boundary condition 9 in terms of H.
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So, this equations will be very useful in solving various optimal control problems for example,

we consider the problem x1 dot = x2, x2 dot = -x1 + u, the boundary condition x1 0f 0 = 1 and

x2 0f 0 is 0, so here initial  condition is given, okay the final boundary at  capital  T we will

consider different cases, the performance index to be minimised is given by J, it is 1/2 x1 of

capital T square + x2 of capital T. 

This is the function capital S in the expression of the problem, here considering the problem

given in 1 and 2, so S as a function of capital T and inside the integral, we have the capital F

function, so in this particular problem, we consider capital F function as x1 square + u square,

the boundary conditions; the final boundary condition we consider are the following; case 1; T is

fixed that is 5 and the final positions x1 of capital T, x2 of capital T are variables.

And the case 2 and case 3 are different cases, T is a variable and the final positions is fixed in

one case, in the second case final position is also a variable.
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So,  we  will  see  how  to  solve  this  optimal  control  problem,  so  the  Lagrangian  function  L

according to the definition, it is capital F + this expression and in terms of H, it is the expression

given here,  so  in  this  problem H is  which  is  capital  F  + lambda dashed *  small  f  and we

substitute capital F is x1 square + u square and capital S function is 1/2 x1 of capital T square +

x2 of capital T, initial condition is 0, final time is 5.

And initial boundary condition x1 of 0 is 0, x2 of 0 is 0, so this is the first case as given in the

problem.
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Now, we have to find the Euler Lagrangian equation necessary condition in this following way,

so H is given by this expression, capital F + lambda dashed * small f function is this and the

Euler Lagrangian equation is del H/ del u = 0, so if you substitute directly del H/ del u, it is 2u +

lambda 2 = 0, so the control u is given in terms of the Lagrange multiplier lambda 2, so u = -

lambda 2/ 2.

So,  the  control  u  is  given by – lambda 2/2,  now del  H/  del  lambda  = x star  is  the second

condition but del H/ del lambda is nothing but small f from here we can see directly, so the

condition gives x dot = f which is the same equation as given in the equation itself in the given

statement of the problem.
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So, x dot = f is; x dot = f means it is x1 dot = x2, x2 dot is –x1 + u the given system of equation,

the third Euler Lagrangian equation is lambda dot = -del H/ del x or it is – del H/ del x1 and del

H/ del x2, so if you substitute this value using the H expression, we get lambda 1 dot = - 2x1 +

x2 + lambda 2, lambda 2 dot = - lambda 1, so we have the expression as given here, if you see

the equation 14 in the place of u, we can replace it with the equation 13 that is you u = - lambda

2/ 2.



So, by substituting u value here, we get x1 dot = x2 and x2 dot = - x1 – lambda 2/2, so the

system 15 and 16, they are the coupled system of ordinary differential equations, so we have to

solve this 4 equations; 4 first-order differential equation.
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And the boundary conditions to solve this problem or as we have already derived, it is given in

the expression, so in case 1 given by this one, T = 5, so it is a fixed value, there is no variation in

T, so delta T = 0 and x1 T, x2 T are variables, so the variable boundary condition is only in the

second term, delta capital T is 0, therefore the boundary condition is given by del S/ del x –

lambda T transpose evaluated at capital T should be = 0.

Because del capital T is already 0 and de x suffix T, the variation in the final condition is a

arbitrary, therefore the expression into an arbitrary value = 0 that implies the vector given in this

bracket should be = 0, so we get the condition del S / del x - lambda dashed should be = 0

evaluated at capital T, so if you substitute S value and then differentiate with respect to x1 and

x2, we get this equation.
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Because S equation is this, so S function is nothing but 1/2 x1 square + x2, so if you differentiate

with respect to x1, we will get x1 and differentiate with respect to x2, we will get 1 here, so del

S/ del x1 is nothing but x1 – lambda 1, del S/ del x2 is 1 – lambda 2 that is the zero function, so

from here we will get lambda 2 = 1, lambda 2 evaluated at capital T is 1 and lambda 1 at capital

T is nothing but x1 of T.

(Refer Slide Time: 25:04)

So, the coupled equation; 4 equation is written in the matrix form like this, x1 of x1 dot is x2, x2

dot is – x1 -1/2 lambda 2 etc. as we saw in the previous thing, the 15 and 16 equations are

coupled and there they can be written in the matrix form like this and the boundary conditions is



given in the problem that is at T = 0, these 2 are already given and this 2 boundary conditions are

derived just the previous slide here.

So, along with this 4 boundary conditions, we can solve the system of equation in the usual way

that we know that the equation x dot = Ax with some initial condition x of 0 = x0, so the solution

is x of t; small t = e to the power At * x0, so using this form, we can solve the equation, we can

solve this equation and then substituting the boundary condition which can get the solution of the

problem.

So, in solving this equation, we will get the values of x1 of T, x2 of T lambda 1 T lambda 2 T,

now after getting the value lambda 2 T, we substitute it in this equation that is equation 13, u of T

= - lambda 2/ 2, so lambda 2 of T we are solving from the system of equation, substitute here we

get the control u of T that is called the optimal control for this problem and the solution x1 of t

and x2 of T after getting the solution with the boundary condition we call that as the optimal

state of the system x1 star x2 star are the optimal state that is coming from the solution of the

system.
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So, this can be solved like this, so now we consider the second example quickly, this case x1 dot

= x2, x2 dot = u and initial condition is x1 0 = 1 and x2 0 = 0, the function performance index to

be minimised is J which is given by x1 square at final time + this expression, so S of capital T is



nothing but x1 square capital T/ 2 and capital F function is given by u square/ 2, so these are the

two things and H = F function + lambda times small f function is given in the right hand side of

the equation x2 and u, this is the small f function.
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Now, by applying the formula, Euler Lagrangian the necessary condition del h / del u = 0 will

give u = - lambda and lambda dot = - del H/ del x that equation gives this one, lambda 1 dot is 0,

lambda 2 dot = - lambda 1 by directly differentiating H with respect to x1 and x2, we get this

one, so the solution; the equation is lambda 1 dot = 0, lambda 2 dot = - lambda 1 and then the

given system of equation is x1 dot is x2 and x2 dot is u.

In terms of lambda because del H/ del lambda is the equation, the 2 system of equation already

given and converted in terms of lambda and then lambda 1 dot, lambda 2 dot equation.
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All the 4 is written in the form of a system like this which can be solved easily, now for the

boundary condition, if T is fixed and the final position is free, as we have seen in the previous

example,  del  of  capital  T is  0  and so,  the  remaining condition  if  you substitute  we get  the

boundary condition as x1 at capital T is lambda 1 at capital T and lambda 2 at capital T becomes

0, by differentiating the S function with respect to x1 and x2, we get this value.

And lambda 1T and lambda 2T is given by this, so we get the boundary condition in this form

and we have to solve the system of the 4 by 4 matrix.
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So, the solution can be easily obtained directly here because lambda 1 dot = 0, it implies that

lambda 1 is a constant and when you substitute that constant here lambda 2 dot is – constant, so

when we integrate, we will get lambda 2 is - constant * T + some other constants C2, so this 2 is

solved directly from here easily, so we can substitute directly, lambda 1 is a constant, lambda 2 -

that constant T + C2.

And now, substitute this lambda 1, lambda 2 in the equation, x2 dot is – lambda 2 and when we

substitute lambda 2 here, we get this expression C 1 T – C2, so integrating this both sides with

respect to a T, we get x2 of T is C1 T square/ 2 – C2 T + C3 constant and we are given that x1

dot is x2, so substitute x2 in the right hand side, then integrate, we will get x1 as the solution like

this.
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Now, this  C1,  C2,  C3,  C4  all  this  can  be  found  out  by  directly  substituting  the  boundary

conditions,  all  the conditions  can be easily  substituted and it  can be easily  solved,  all  the 4

constants can be obtained, so after substituting all this constants in the expressions, so we get x1

of t is this, x2 of t is this that is the optimal state variable of the problem and the control is given

by this expression that is u of T is – lambda 2 and lambda 2 is obtained by this expression.

Lambda 2 of T is - C1 T + C2, so this is the optimal control for the given problem, so here we

have seen 2 examples in which the final time is a fixed value okay, where the variation of final



time is 0 and made use of the boundary condition accordingly but in the next lecture, we will see

various other cases, the remaining 2 cases we have to discuss, this the cases where final time is

variable and the final position are fixed.

And both final  time and final  position,  both are variables,  in  such problem how to find the

optimal control, so these cases we will discuss in the next lecture and solve some examples,

okay. Thank you.


