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Dear students, welcome to this second lecture on optimal control, in the previous lecture we have

seen the optimal control problem for fixed boundary problems and in this lecture, we will see

various different types of boundary optimal control problems.
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So, here the previous lecture we have seen the fixed boundary problem in this particular way that

is initial time is t0, final time is capital T and initial condition is x0 and final condition is x1, all

are; all of them are fixed, x of t0 is x0, x of capital T is x1, so all the values are fixed to one and

the second type of problem which we will be consider is the t0 and capital T, both are fixed value

but the initial condition is fixed, x0 is fixed but x1 can vary.

There is a; it is not a fixed value or fixed vector here, here we consider the state variable is a

vector in Rn and the third type is the x1 is fixed, x0 and x1, both are fixed, initial condition and

final condition are fixed but the time is not fixed, capital T can vary, the initial time is fixed, final

time can vary and the other type is; if you consider the initial condition is fixed x of t0 = x0 is

fixed both of them.



But the final time as well as the final condition both of them are not fixed, so it can be any

function of this type, so various types of function can be considered neither the final time nor the

final position, both of them are variables here in the fourth case. So, in all the cases we would

like to find an optimal control for the control problem of this type x dot = x of t u of t, so we

have a control system of the form.

We want to minimise a functional j, in the previous lecture, we have seen J is of the form, f of x

of t and x0 of t u of t and t dt, so this expression but in addition to that we can also optimise

expression of this form, S of t etc. 
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The final a function, which is a function of the final time capital T and which can be minimised

whether it is constant or variable, a function of S can be considered and the performance index or

the cost functional J1 is defined like this which is to be minimised or maximised. So, if these

values are fixed, x of t and capital T, both of them are fixed values, so at the optimum value of j1

with S or without S both will give the same control function u of t.

Because it will; S is going to be a constant only, if S is a variable, then the optimisation of this

with S and without S may be different, will be different definitely, so for considering a cost

functional of this type, it is required that the x of either the final position x of t or the final time t,



they should be a variable or both of them are variables, so we consider the control system x dot =

f of x of t u of t, t.

And the cost functional J1 = S of capital T, t + plus integral of this expression, x of t u of t and t,

and the boundary conditions are given by x of t0 x0 + and x of t is free and t is also free and it

will include all the cases, all the 4 cases, we can take x of t is fixed, then t is fixed and both of

them are fixed, so all the 4 cases will be taken care by deriving a procedure for this general case.
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Now, dS/dt integral is given by this expression, it is well known, S at final position, – S at the

initial position of this and if you substitute, because here is J1 is defined as S at capital T is there,

so using this expression, S at capital T is given by integral dS/dt - S at the initial condition, so we

substitute that expression, we will get the expression, J as integral here already f is there, in the

place of S at capital T, we will replace integral dS/dt - + S at the initial condition.

So, we can substitute the expression here, so consider the equation, integral t0 to capital T dS/dt

= S at the final time – S at the initial time, so that is given, so let us take a new functional J, J of

u given by integral t0 to capital T capital F + dS/dt and integral dS/dt from the previous step, if

we substitute, we will get J = integral t0 to capital T f of x, u, t dt + replacing dS/dt integral as S

at final time - S at the initial time.



So, now if we compare this J1 and J, only extra term is here - S at the final position otherwise

both of them are the same and S at the final; S at the initial point t0, it is a constant, so by

minimising J, whatever control function we will get the same control function we will get by

minimising J1, so instead of solving this  problem J x dot = f  and J; minimising J with this

performance index, we can do the minimisation problem with the J; J of u of S, this expression as

the performance index, which will be easy to handle.

So, now dS/dt because S is a; if you take S as a function of x, t; x of t, t, then it is del S/ del x *

dx/dt + del S/ del t, here we note that S is; x is a vector, so the dash indicates that it  is the

transpose of the vector, del S/ del x, del S/ del x means it is del S/del x1, del S/ del x2, these are

the component of the vector; the column vector and when we put the transpose, it is the row

vector, del S/ del x1, del S/ x2 etc.

So, this vector is del S/ dx transpose, is this one and x dot, it means it is the vector as we know

x1 dot x2 dot etc. so and del S/ dt is a scalar function, now at the optimum value, we say that the

solution of the problem; optimal solution of the problem is the solution x star of t is the optimum

state and u star of t is the optimum control, so at this 2 functions, if we evaluate J, so we are

saying that J u star is given by wherever x and u is there, we will replace it with x star and u star

in the expression J.

And the equation x dot is replaced by x dot star = f of x star u star t that means the given

equation is; we are substituting just the optimal state, x star in the given equation, so we get this

equation and J is given by this at the optimum value.
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Now, at any other function that is in the neighbourhood of the optimum x star, we take x star +

del x star, if this is our x star function then by adding x star of t + del x star of t, we get a new

function, depending on the initial and final condition, if they are all fixed it will be like this, if

they are not, if one is a variable, then we may get some other expression where there will be

variation at the end position also.

So, depending on the 4 types of problem, we will get x star and x star + del x star function,

similarly u star and del u function, so this can be added, so now substituting this function x star +

del x in the given equation, this the state equation, the first one; x dot = f of x, so we get that = f

of x star + del x and u star + del u, here this star should be cancelled, f is a function of the x and

u, so it should be x start + del x and u star + del u.

J of u = integral t0 to t + del t at the say, t is the final position and t + del t is the; del t is the

variation in the final position but if t is a fixed value then del t is 0, so here for the case; first case

where t is fixed, the del t will be 0 but this is a general procedure for all the 4 cases, so we take a

general variation for the final position t, t0 to capital T + del t and at the any function x of t in the

neighbourhood of the optimum control, optimum state we substitute those values here, + dS/dt.
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In the place of the functional J, we are substituting; first we substitute x of t and u of t and

subtract from the original value at x star and u start, so now we take the augmented functional, J

suffix a at the optimal control u start, so that is given by integral t0 to capital T f at x star u star

and everything is calculated at the optimal state x star, all this terms are calculator at x star.
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And in the neighbourhood of x star, next we substitute  Ja at any u of t that is u star is the

optimum control and u of t is in the neighbourhood of optimum, so we substitute in the place of

x, we substitute x star + del x and u star + del u etc. so, wherever x star was there, we just add the

variational function del x and del u and calculate the same expression for the Ja function.
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So, now we define the Lagrangian as the function which is present inside the integral, the entire

integral for Ja u star, the function is capital F + del S / del x transpose * x dot etc. so this function

we call it as L and the incremental function which is evaluated in the neighbourhood function

that the whole bracket we call it as L delta, super fix delta, so now we find the variation between

Ja at u star and Ja at u.
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So, we just denote it as Ja at u star as integral L dt, Ja at u as this expression. Because the; there

is a variation in capital T also, the limit; upper limit also will vary, t + del t and L delta * this

expression, so this can be split into t0 to capital T and capital T to t + delta t of this expression

and using the Taylor series expansion for L delta, then we will get the expression like this, the



second term integral t t0 t + del t of L delta is given by the value is approximately given by this

expression using the mean value theorem that  this  calculating L delta  at  the final  position t

multiplied by the length of this interval that is del t.

So that is approximate this value because it is a very small variation del t and we get this value

for approximate value. Now, using Taylor series for L delta, we get the L delta will; as we have

defined here, L delta is this expression, so if you write the Taylor series for the function capital F

and the remaining things and collecting the first order terms only at omitting all the second order

terms, we get this expression and so L delta is this one, okay.
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Now, the variation del J is Ja calculated at u - Ja calculated at the optimal control and that is

nothing but integral t0 to capital T L delta - L * dt, this L is not there, L * dt +; we have seen the

previous slide, the value is L at capital T * del t, so we get this expression, so the variation del J

is given by this expression + L at capital T * del t, now we take the second term in this integral,

del L/ del x dot transpose * del x dot.

So, del x dot can be written as d/dt of del x, sorry this dot to be removed, so d/dt of del x is this

expression, now we integrate by parts this 2 terms, we get del L/ del x dot * del x evaluated at t0

and capital T – d/dt of del L/del x dot * del x * dt, so this expression we get. 
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Now, substitute this term instead of the second term, then the variation del J is obtained by this

formula that is integral del L/ del x – d/dt del L/ del x dot, its transpose into del x dt + del L/ del

u that is also there in the expression here, del L/ del u * del u, we have taken the first term, for

the second term we have taken this integral d/dt of del L/ del x dot, del L/ del u is also there, so

this 3 terms + del L at capital T * del t that term is there.

And this expression del L/ del x dot * del x evaluated from the t0 to capital T, so this; so, now it

is evaluated only at capital T because here we see that there is no variation at 0, when we take t =

t0, the variation of the x at t0 is 0 because the initial position is same for all the functions which

we consider,  there  is  no change in  the  initial  condition,  so  only  at  the  upper  bound;  upper

boundary value T, we evaluate this.

So, this term is del L/ del x dot. transpose * del x dot t evaluated at capital T, so this is our

variation; first variation. Now, for the optimal control, the first variation should be = 0, del J

should be = 0 that gives the necessary condition for the optimal control.
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And that can be obtained by the following. further we see that the lambda value we have to

choose, it is at our disposal, so it can be selected in such a way that the first bracket turns out to

be 0, we select the lambda value in this expression, del L/ del x – d/dt, if you see here the

expression l; L is having the lambda value here, lambda dash * all this thing, so first we select

the lambda in such a way that this expression vanishes; del L/ del x – d/ dt of del L/ del x dot = 0

by choosing suitable value of lambda.

So, we get the first equation as the Euler Lagrange equation and then we can see that there is no

variation in because the variation we are considering only in the function, the x of t, the control

function is not affected by the variation x of t, so the this is arbitrary, here del u of t is arbitrary,

so here del u; del L/ del u can be selected to be 0 that is our second condition we get and finally,

after equating the first term, it is already 0.

The second term is  also 0,  only the remaining terms are del J  = L at  capital  T del t  + this

expression that should be = 0, so we get the condition; boundary condition as del J = this = 0, so

with this 3; A, B, C if  you solve a given optimal control problem, we will  be able to get a

solution x star and u start, so which may turn out to be the optimal required control because its

only necessary condition.
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So, the second variation should be considered to asset whether the solution obtained are actually

optimum or not, okay, so but in most of the practical problem, this solution turns out to be the

optimal  control  problem that  we will  see some examples  we will  see later, so now we will

introduce the notation Hamiltonian, introduce the function H which is called the Hamiltonian

which is say defined by capital F + lambda.

If we observe earlier the Lagrangian in function, L is defined as capital F + all this terms, now

what we do is; we just take those terms in which x dot is not there, the derivative of x, so we take

Hamiltonian as capital F function and del S/ del t function there is no x dot and here lambda

multiplied  by  the  small  f  function,  so  we  just  omit  the  x  dot  terms,  so  that  is  called  the

Hamiltonian, okay.

So, if you define H in this way, then we will get L as the remaining terms to be added, L star = H

star  function  Hamiltonian  +  all  the  terms  which  contains  the  x  dot  term,  so  we  write  this

expression, I think del S/del t is also included in this one, it is not included in the H, Hamiltonian

function, okay. So, now we can easily see that; already we have derived the necessary condition

for the optimal control.

One can solve the problem using this expression, if the problem is quite straightforward, simple

expressions are there but a convenient expression is using the Hamiltonian function, so after



introducing the Hamiltonian function, we can convert all this equation A, B, C in terms of H, so

if we take the first one, Hamiltonian can be written in this form, okay, so here; so, now we have

shown that the conditions A, B, C are the necessary condition for the optimal control of the given

system.

Now, we  are  interested  in  converting  this  conditions  A,  B,  C  in  terms  of  the  Hamiltonian

function, so we can see that the condition B that is del L/ del u = 0, directly we can see that it is

same as del H/ del u = 0 from the expression of L and similarly, the condition A that is del L/ del

x – d/dt of del L/ del x dot = 0 that is condition A, so now we replace it with the H function, so

del L/ del x.

If you see the expression L, so del L/ del x = here, del L/ del x will be del H/ del x here and then

the derivative del square S/ del x square and del square S/ del x del t that will come and here

there is no x involved, so this will be; the derivative will be 0, so we will get this expression, del

square S / del x square * x dot, okay, so this expression we will get. Now, the second term is d/dt

of del / del x dot.

So, if you substitute here, del d/dt of del L/ del x dot is d/ dt of del L/ del x dot will give del S/

del x and - lambda term will come and when we differentiate it, we will get del square S/ the

total derivative d/dt of del S/ del x is given by del square S/ del x square * dx/dt – del square S/

del x del t – d lambda/ dt, so this term, so if you subtract this 2 in the; if you substitute in the

condition A, we will directly get this expression.

(Refer Slide Time: 27:56)



Del H/ del x = - d lambda/ dt that is the condition E; second condition, del L/ del lambda = 0 that

is same as del H/ del lambda = x dot from the expression of L, we can verify, further we get the

boundary condition as this thing, as we have seen earlier  the boundary condition is C, so to

replace that this is a condition C and which is equivalent to this expression, wherever L is there,

if you substitute the H function as given in this equation.

We get this expression, H + del S / del t evaluated at capital T * del t + del S/ del x - lambda star

evaluated at capital T * del xt, okay = 0, so this result we will prove in the next lecture that is

because this needs a proof separately and which will be used for various cases, the 4 cases which

discussed for the optimal control, this is the key boundary condition for various this thing. Now,

we can easily see here after proving this result, we can see that if there is no change in the final

condition.

If capital T is fixed, then del t is 0 and similarly, if the final position is also fixed, then del xt is 0

but if one of them is having a variation, we will get a suitable boundary condition for solving a

system of equation. So, for finding the optimal control in terms of Hamiltonian, we have the 4

conditions, D, E, F and G, where G is the boundary condition for the solution of the optimal

control.
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Now, we will see an example illustrating this procedure, so let us consider a equation x dot = 2x

+ 3u and the cost functional is given by 1 to capital T 5x square + u square * dt and the initial

condition x of 1 is 0 and final condition x of t = x of xt, so there can be different cases t can be

fixed and x suffix t may be a variable similarly, x of xt may be fixed and t is a variable or both of

them are variables and or both of them are fixed 4 cases.

So,  in  all  this  cases,  how  to  find  an  optimal  control  for  the  given  equations,  so  here  the

Lagrangian is given by the Hamiltonian H - lambda times x dot, if you compared the equation L

star = H + all this, so if you note that the we have started with the cost functional J as S of xt, t,

capital T + etc. but in this particular example, the first term S is not there, so it is = 0, only the

remaining integral is there.

Here, we get,  this implies  S = S function is 0, so wherever S comes,  we take to 0 function

therefore, the Lagrangian = H - lambda x dot, where H is given by the function F + lambda times

small f, and where capital F is the integral, integrand 5x square + u square and small f function is

2x + 3u, so these are the equation,  now we directly make use of the four conditions for the

necessary condition for finding the optimal control.

So, del H/ del u = 0, so if we take directly del H/ del u that is 2u + lambda times small f, so

derivative is 3 = 0, so this implies u in terms of lambda -3/2 lambda and the second is del H/ del



x = - lambda dot, the second equation, so del H/ del x will give 10x + lambda times 2 that is = -

lambda dot, the second equation and the other equation is already given in the question itself, so

we have got x dot = 2x +3u and lambda dot = -10 x + -2 lambda.

So, in the place of u, we can substitute -3 / 2 lambda, so it is 2x – 9/ 2 lambda, so this 2 equation

and for the boundary condition, we make use of this equation, H; S is 0, therefore H evaluated at

capital T * del t and - lambda evaluated at capital T * del xt, it is H function evaluated at lambda

* del t + - lambda function evaluated at capital T * the variation of the final position = 0, now if

the t is fixed, then del t = 0.

So, only this will be the boundary condition, so that implies - lambda of capital T * del xt = 0 but

the variation is arbitrary, so this implies lambda of t = 0 and already we have given some initial

condition x of 1 = 0, so these are the condition, we have this 2 equations, x dot = this, lambda dot

= this equation with this 2 boundary conditions, we can solve the system of equation and obtain

the optimal control u.

And then after substituting the optimal control in the same equation, we will get the optimal state

value, so we obtain x star of t and u star of t, because first we solve in terms of lambda, lambda

and x, then by substituting the lambda value, we get here u = -3 / 2 lambda, so we get the optimal

control then substitute the optimal control in the first equation, we get the x star also, so we can

solve the equation in this manner.

So, same procedure can be adopted for the if xt is fixed and t is a variable, we can evaluate in a

similar manner, so a different examples we will demonstrate in the next lecture that is optimal

control 3 and we will prove this result also, the boundary condition result in the next lecture,

okay, thank you.


