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Lecture - 44
Stabilizability

Hello  viewers.  Welcome  to  the  lecture  on  stabilizability  of  dynamical  systems.  In  many

practical control systems, it is desirable to find a control or design a control so that the system

is stable at some desired equilibrium position. So in this lecture, we will see the procedure for

stabilizing an unstable system.
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So first let us recall some simple results which we have seen in previous lectures. So consider

the linear system x dot=Ax with initial condition x of 0=x0. So if the eigenvalues lambda i,

i=1 to n or such that sigma is the maximum value of the real part of the lambda i, then we can

show that the norm of the e to the power At the state transition matrix is<=M times e to the

power  alpha  t  where  alpha  is  any  real  number>sigma  where  sigma  is  given  here  the

maximum value for a suitable constant M.

So this result we have already shown in the stability lecture. So using this we can show that

the solution of the system 1 that is x of t=e power At*x0 is a solution. So the norm of x of t

is<=M times e to the power alpha t*the norm of the initial condition. So the initial position is

always bounded, so norm of x0 is a bounded number and in case all the eigenvalues are

negative or with negative real number then sigma has to be a negative number.



Then, we can find a number alpha which is also negative such that alpha is>sigma. So in this

case norm of xt is<=M*e power alpha t that implies that norm of xt tends to 0 as it tends to

infinity because alpha is negative number. So this shows that if all the eigenvalues of a matrix

have negative real part, the system is asymptotically stable at the trivial solution x=0.
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So in case  the  system is  unstable  at  the  trivial  solution  x=0,  then we have  also seen in

previous  lectures  on  feedback  control  that  the  system can  be  stabilized.  We can  find  a

feedback control u suitably so that the resulting system x dot=Ax+Bu becomes either stable

or  asymptotically  stable  depending  on  the  requirement  of  the  system.  So  this  has  been

described in the feedback lecture with some examples also how to find the u of t=k*x of t.

And the procedure for finding the k matrix was shown earlier. So this is possible if the system

is controllable, if the pair A and B are such that the rank of B, AB, A square B, etc that is

equal to n. In that case, we are able to find a feedback control to stabilize the system but in

case, the system is not controllable, A and B are in such a way that the rank is not full. Then,

the rank of B, AB, A square B, A power n-1 B=p which is strictly<n.

So the system is not controllable. So in that situation how to stabilize this system, for that we

have seen in our previous lecture on the system which is not controllable. So we will be able

to find a canonical form for the system 2 in this particular form 3 and 4. That is we can split

the system in two parts that is x1 cap and x2 cap represent the state of the system such that x1

cap dot=A1 x1 cap+A2 x2 cap+B1 u.



And x2 cap=A3 x2 cap, so this is possible that a procedure has been explained in a previous

lecture.
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So where x cap is=p*x for a suitable nonsingular matrix p and so x cap=x1 cap x2 cap is the

splitting of the vector x cap and the matrix A1 is a p x p matrix where this p is the rank of B,

AB, etc and the matrix A3 is n-p x n-p square matrices. The system 2 has been reduced to the

canonical form 3 and 4 and the first system the system 3 has the matrix A1 and B1 in such a

way that  it  is  controllable  and  the  second system is  uncontrollable  portion  of  the  given

system.

So now how to stabilize this system? If the system 4 is a stable system that is the matrix A3 if

it turns out to be a matrix with all the eigenvalues with negative real part, then system 4 is

separately a stable system okay and then substitute that solution x2 in the equation 3. Then,

we will arrive at a system x1 cap.dot=A1 x1 cap+B1 u+some term which is tending to 0 as t

tends to infinity.

Because x2 cap will tend to 0 as t tends to infinity if you assume that A3 is a stable matrix. So

we have a controllable system 3 and the extra term A2 x2 bar is tending to 0 as t tends to

infinity. So now this equation 3, it can be stabilized using a suitable feedback control because

the condition of controllability is valid for the system 3 and using the previous procedure we

can find a K matrix such that this expression.



We can find u=so we can find u=some k1*x1 cap so that A1+B1 k1 has negative eigenvalues

okay. So in that case, this system can be stabilized system 3 and system 4 is also stable. So x1

cap will tend to 0 as t tends to infinity and x2 cap also will tend to 0 as t tends to infinity.

Ultimately, we can see that x is=p inverse x cap so that so x of t will also tend to 0 as t tends

to infinity.

So the system original system itself is stabilizable okay under these conditions but if these

conditions are not satisfied then we will not be able to guarantee any stabilizability of the

system. If A3 is an unstable matrix, then the system will remain unstable in this particular

using these terms okay. So now we will go for a different procedure.
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So in situations where the system cannot be stabilizable using this procedure, then we may try

some Lyapunov method for stabilizing a system. So first we will see a system which is not

having any control  term,  simply  a  nonlinear  term and time invariant  that  is  autonomous

system x dot=f of x where f is either linear function or some nonlinear function such that f of

0 is 0. So that will imply that x=0 is the equilibrium point for the system 5.

So now we want to analyze the stability of the system at this equilibrium point. For that in

some previous  lecture,  we defined  the  Lyapunov  function  and  if  you are  able  to  find  a

Lyapunov  function  with  this  condition,  then  the  system  is  we  can  make  it  a  stable  or

asymptotically stable.
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So if you are able to find a Lyapunov function V of x, here we note that x is a vector, this x is

say x1, x2, xn belonging to belongs to Rn and f is also a vector, f of x means f1 of x, f2 of x,

fn of x, so the nonlinear system of differential equations here. So when we talk about V of x,

it means V of x1, x2, xn a function of n variable.  So this function V of x and its partial

derivatives are continuous function means continuous functions of this n variable.

So it is an n-dimensional function and the continuity of n-dimensional function should be

applied here at various points of the n tuple and it is positive definite, that means of V of 0 is

0 and for all other non-zero V of x has to be strictly  positive.  So for example in a two-

dimensional case V of x1, x2 then if we plot the graph of this function V of x1, x2 positive

definite function, it means the x1 axis, x2 axis are here.

So V at 0, 0=0 and V at any point x1, x2 should be positive. This is the value of V, so the

graph of this it is something like this. It is a surface V of x1, x2 always above the x1, x2

plane.  So it need not be a parabola in type of a symmetric shape, it  may be some shape

surface which is just above the x1, x2 plane and 0 at the zero point. So that is given positive

definite condition.

So it  is  not  necessary  that  it  should be  infinitely  like  this.  So  if  you are  able  to  find  a

neighborhood that is norm of x<=k, let us say a circle of radius k we are taking, so within this

region this V of x1, x2 if you define,  it  is positive definite,  that much is sufficient for a

Lyapunov function and the derivative of V with respect to t that is dV/dt=it is negative semi

definite, so that is dV/dt is del V/del x1*x1 dot, etc.



So we have the system x1 dot=f1,  x2 dot=f2,  etc  so that is given here.  So dV/dt should

negative semi definite the third condition. So that condition means V dot of 0 is 0 and it

should be<=0 for all x such that in this region within the radius of k it satisfies this condition.

So if we are able to find a Lyapunov function for a system given system then the system is

stable.

So this proof has been done in a previous lecture on Lyapunov function and the stability of

nonlinear systems.
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So now we consider a system like this. For example, x1 dot=x2, x2 dot=-x1-beta times x2. So

this system it is nothing but a harmonic oscillator type of thing, x double dot=-x-beta times x

dot.  So  this  is  either  you  can  consider  this  as  a  mechanical  system where  the  mass=1,

mass*acceleration  that  is  the  left  hand side  that  is  the  force  and it  is  due  to  the  spring

constant. Here we are assuming the spring constant=1.

Otherwise, we can write –some k times x where k is a spring constant. For simplicity, let us

assume that spring constant is 1, x double dot=-x the force is proportional to the negative of

the distance from the equilibrium point that is the meaning minus the damping force. It is due

to friction or air friction and other type of disturbances. So if you have such equation either it

can be considered as a spring mass system or a harmonic oscillator which has the equilibrium

position in the center and the mass is oscillating in both sides of the equilibrium point.

So this when we convert it into a system, it will be x1 dot=x2. If you write x1=x and x2=x

dot we will get the system. For this system, it is obvious that the 0, 0 is equilibrium point if

we equate the right hand side and then we can consider V x1, x2 it is=1/2 times mass is 1 and

velocity is x2 square, 1/2 MV square that is the kinetic energy and 1/2 x this k is 1 here so

1*x1 square, so it is the potential energy.

So for any mechanical system of this type, the kinetic energy+potential energy it is the total

energy of the system. So this will act as the Lyapunov function for this type of examples or

instead of this type of energy function we can also consider energy functions x1 square+some

B times x2 square, it is not exactly the kinetic energy+potential energy somewhat we can call

it as resembling the energy function.

So this type of function normally will work as a Lyapunov function for simple linear systems

of this type. So we can easily show that V dot by differentiating del V/del x1*x1 dot+del

V/del x2*x2 dot which is equal to del V/del x1 that is x1*x1 dot is x2 and +del V/del x2 that

is also x2*x2 dot that is -x1-beta times x2. So ultimately we will get x1, x2 cancels, we get

-beta times x2 square.

So this is<0 if x2 is non-zero but if x2 is=0 and x1 is non-zero, it will not show that the

system is negative definite, is not it? But we can easily see that if x2 is 0, x1 has to be 0

because if you substitute in the equation, if you put x2=0 in the, if x2=0 that will imply x2 dot



is also=0. So from this equation, you can say from the second equation x2 dot is 0, x2 is 0

that will imply x1 is also=0.

So the V dot has to be negative semi definite, V dot is negative definite actually. So this

implies  that  the  system  is  asymptotically  stable.  That  means  it  will  stop,  after  certain

oscillations it will come to a stop that is the meaning of asymptotic stability of the system but

in general always the Lyapunov function need not represent the energy of a given system. So

we can see several  different  examples  in  which  the  Lyapunov function  is  different  from

energy.

But  only  it  should  satisfy  the  conditions  given  here,  the  3  conditions  for  stability  or

asymptotic  stability  of  the  system.  So  for  example,  now  let  us  consider  the  controlled

pendulum, sorry controlled harmonic oscillator or the spring mass system where other than

the gravity or other than the natural pull of the system, we can introduce an extra control

term, so that is given by this one.

So u is the control applied on the system. So in this case, we can have another equilibrium

point also. It is not necessary that always the system should stop at the equilibrium point 0, 0.

So we can introduce a desired equilibrium point. So for example in this spring mass system if

there is no force extra force other than gravity let us say it will stop at a particular equilibrium

point and then if you pull it down and leave it, it will oscillate and then again stop at the

equilibrium point only.

But now if you are giving an extra force on the system, we can also say that the system

should stop at this point. For example, from the equilibrium point let us say the distance is L.

Let us say it is given here L/2 okay. The total amount of pull which we can make is because

the spring has certain capacity, we cannot pull it throughout I think up to infinity. We can pull

it up to certain level L let us say that is the maximum we can pull it.

So we want to stop the pendulum, sorry stop the system at the point L/2 from the equilibrium

position okay. So if you want to do this, we have to apply an extra force other than the

gravity, so that extra force is given by u in the second equation and the desired point in which

we want to stop the spring mass system is the position is L/2 and because we are stopping it

at that place, the velocity x2 desired should be 0.



So this is our desired state, desired position and desired velocity but actually when the spring

is moving because it is changing with respect to time, so x1 and x2 are the actual value and

the desired values are x1 desired and x2 desired. So the error in the current position and the

desired position is x1-L/2 that is e1 and e2 is x2-the desired is 0, so it is x2 itself. So we call

the error in the system as e1 and e2.

Now convert this given system of equation in terms of the error, so if you differentiate e1 that

will be x1 dot-0. So you will get e1 dot is x1 dot itself and e2 dot is x2 dot itself.
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So we can write the system in this form e1 dot we denote it by e2 and e2 dot is given by from

the equation we can write like this, u-alpha* in the place of x1 we will write e+L/2. So that is

given here –beta times e2. So now we have to design a force, the control to be designed by

ourself, for that how we will use the Lyapunov theory that is what we are demonstrating here.

So let us select a control like this, u=-k1 times e1-L times e2+alpha times L/2 where alpha is

the constant in the equation itself.

Alpha and beta are known values and here k1 and L we have to design ourself suitably for

our particular goal of stopping the system at the desired position. So let the control u is given

by –k1 e1-L e2+alpha times L/2. So if you substitute this control here, we will get e1 dot=e2

and e2 dot=the substitute u here. See the Lyapunov function, there is no standard procedure

for finding a Lyapunov function.



It is somewhat a trial and error method only, so we will try with, normally we will try with

this type of energy function which is resembling an energy function. So if it works well that

is fine, otherwise we have to search for another Lyapunov function so that to test whether the

system is stable or not but in this practical problem we know that the system can be made

asymptotically  stable  because  it  is  a  spring  mass  system,  we  can  definitely  stop  it  at  a

particular place by applying a suitable force.

So we know that the system can be stabilized physically. So we can search definitely for a

Lyapunov function to make it stable okay. So in a very random problem simply there is no

physical meaning or anything just a mathematical model is given. So in that case we cannot

guarantee anything. We do not know whether the system is stable or stabilizable,  etc and

there is no physical meaning also for that problem.

So in that situation, it may be very difficult to decide a Lyapunov function etc but in this type

of problem, physical problem or real life problem we can always try to stabilize the system

using this type of energy function if the system is a linear one because here this example the

system is  linear. So let  us  consider  V e1 e2 is  k  e1 square+e2 square and then  so it  is

obviously a positive definite function.

P of 0, 0 is 0 and for all other values it is strictly positive, so positive definite and then V dot

is del V/del e1 that is 2 times k e1*e1 dot that is e2 so that is the first term+2 times e2*e2 dot.

So we substitute the e2 dot from this equation that is –k times e1, etc. All the terms are there.

Then, cancelling out certain terms and then we will get finally we will get -2L e2 square. So

if L is a positive number, this -2L e2 square is strictly negative.

Then, we have the term -2 alpha e1 e2+e1 e2*2k-2k1-2 alpha. So these terms shows that I

think this term has come extra, it is already added here, -2 alpha so this term is not there okay.

So now we can see that  by selecting  this  k  because we have to select  k1 and L,  so by

selecting this k1 and here also in the Lyapunov function also we can select a k value ourself,

a positive value, so k1, k and alpha is already given in the equation itself, it is a known value.

Suitably, selecting k and k1 in such a way that this bracket becomes 0. What we see here is

the remaining terms are simply -2L e2 square and -2 beta e2 square. These two terms are



there, both of them becomes strictly<0 and so the system is asymptotically stable because we

can argue in the similar manner.

If e2 is 0 by substituting in the equation, we can also show that e1 has to be=0. So both of

them has to be simultaneously=0. Therefore, the system is asymptotically stable here. So this

demonstrates that we can use the Lyapunov theory to design control in a practical problem

like this.
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So now we will consider examples in which the Lyapunov function need not be in the form of

an energy function.  So let  us consider  the system mL square theta  double dot+mg L sin

theta+b theta dot=0. So this is a damped pendulum problem. So we have already seen this

example. We have a pendulum of this type which is oscillating and this is the theta value. So

we can write the equation where L is the length and m is the mass here and g represent the

gravity.

So it is a standard equation of pendulum and the last term it represents the air resistance due

to  the  air  resistance  it  has  stopped  resisted.  So  the  equation  6  represents  the  damped

pendulum. When we convert it into the system form, we can write it is as x1 dot=x2 where x1

is theta and x2 is theta dot. Then, we can convert it in this form and for simplicity let us take

mass is 1 and length is also 1 unit.

Then, it becomes a simple expression theta double dot=this or in the system form it is x1 dot

is x2, x2 dot=-g times sin x1 and –b times x2. So it is a nonlinear system of equation. So in



this case, if you try the energy type of function that is A times x1 square+B times x2 square

that may not give any fruitful result as a Lyapunov function but we can try this Lyapunov

function.
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So again there is no fixed rule, it is also some kind of trial and error type of thing and it is

arrived at this Lyapunov function will work for this particular system. There may be another

Lyapunov function working for the same system but if we take this one, alpha times 1-cos

x1+beta times x2 square. So the equilibrium point here is 0. The equilibrium point from the

pendulum is it has to, after oscillation it will stop at the vertical position here.

And the velocity will be 0, so x1 that means theta is 0 and x2 that is the angular velocity also

should be 0,  so it  will  stop here is  the equilibrium position.  So if  we try this  Lyapunov

function, you can see that it is always positive whether x1 is positive or negative, in all the

cases it cannot exceed the value 1 so 1-cos x1 is always positive value and when x1=0 1-cos

x1 is 0 and x2 is 0 implies the second term is also 0.

So it is 0 at the point 0, 0 V of 0, 0 is 0 and for all other values it can be easily seen that it is

strictly positive, x1, x2 is strictly>0 for when both x1 and x2 are not 0. So it is a positive

definite function. Now when we differentiate dV/dt and substitute the values del V/del x1, so

that will give alpha times sin x1*x1 dot is x2 so that is given here and del V/del x2 is 2 times

beta*x2 and x2 dot is substituted from the previous equation –g sin x1, etc. 



So what we get is alpha times x2*sin x1-2 times beta x2*sin x1 and -2 times beta*small b*x2

square. So from this equation, we can see that if you select alpha-2 beta=0 or in other words

alpha=2 beta by choosing these constants like this we get a suitable Lyapunov function in

such a way that V dot becomes strictly<0, the same argument. If x2 is 0, x1 has to be 0

therefore it is negative definite function.

So this implies the system is asymptotically stable okay. So it will come to a stop after long

oscillation. Here it is without control, it is a dynamical system, a natural system.
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But if you want to stop this system at some other position let us say we want to apply a

control on the pendulum. So the natural oscillation is due to gravity but if you apply a torque

at this joint here, so that rotational force that is torque here can control the movement of the

pendulum. So that is called the controlled pendulum and we can write the system equation as

in the same manner x1 is theta and x2 is theta dot.

Then, the equation is converted into this particular form, x2 dot is – sorry tau/mL square etc.

Now by taking the constants m and L as 1, the simple system is given by this expression. So

it is the same system as we consider earlier except the forcing term tau or the control term.
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So now our aim is to find a control torque in such a way that the pendulum stops in this

angle. We want that the pendulum stops at an angle pi/4 and the velocity here is 0 okay.

Instead of stopping at the natural equilibrium point, we want an equilibrium point which is

given by pi/4 and 0, the position and the velocity, so how much of torque we have to apply at

the joint that is the problem here.

For that we consider the error, so when the pendulum is not at the equilibrium point, it will be

at some other point x and x is x1, x2 and x desired is pi/4 and 0. So the error at every instant

of time is x-x desired and if you differentiate this one, we will get the derivative of the error

is simply x dot because x desired is a constant value here. So e dot=x dot only and if you

write e as e1 and e2 if you split it as e1 and e2, so e1 is nothing but x1-x1 desire and e2 is this

expression.
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Now differentiating e1 dot and e2 dot separately and then substituting from the equation this

equation  we get  this  equation  e1  dot=e2 and  e2  dot  is  tau-this  expression.  If  you try  a

Lyapunov function in this as in this previous problem because see these two problems are

almost similar except that there is a control torque in the second equation, tau is added in x2

dot. So now if we try a Lyapunov function as here alpha times 1-cos x1 etc, this may not

work for this thing, for finding a torque this may or may not work properly.

But instead let us try a Lyapunov function like this itself like the energy function. This may

turn out to be a simple one. So let us say V=some alpha times e1 square+e2 square okay or

beta  times  e2  square.  Later  we can  select  the  alpha,  beta  suitably. If  V is  this  one,  the

derivative dV/dt is given by 2 alpha e1 and e1 dot is e2+2 e2*the derivative e2 dot is in the

right hand side, tau-g sin of e1+pi/4-b*e2. So this is the expression.

Now we want to make this V dot to be negative definite, so we have to select this control tau

in such a way that V dot becomes negative definite. So that will work as a suitable controlled

term.
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So we choose the control tau as actually we can remove this one, g sin of e1+pi/4 can be

removed by taking tau as +g sin e1+pi/4, one term can be selected like that so that these two

gets cancelled and the remaining term we want to cancel this also, 2 alpha e1 e2 because

e1*e2 will not give any positive term is not it? So we want to make some squares only in the

V dot expression.

So wherever we find uncomfortable terms like this, we just cancel it out by selecting the

control in a suitable manner. So let us take tau as this the control as alpha times –alpha times

e1+this term. If you substitute these two terms, we will see that V dot=that 2 alpha e1 e2-2

alpha e1 e2 and we will get this one 2 beta*e2 square. So these two gets cancelled, this will

imply that this expression -2 b e2 square it will be<0.

And in case e2 is 0, it does not mean that V dot will be=0 because if e2 is 0 that will also

imply that e1 is also=0 that we have seen in the previous also. So using that we can show that

V dot is strictly negative definite. So this control will make the pendulum stop at the pi/4

angle  with zero  velocity. So  we have  seen  here  how to  utilize  the  Lyapunov  theory  for

designing the control for various control systems for a linear system as well as a nonlinear

control system.

So  in  the  forthcoming  lectures,  we  will  see  some  more  examples,  more  complicated

examples, how to make use of all the feedback controls and Lyapunov theory for designing

controls of different systems okay. Thank you.


