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Hello viewers. Welcome to the fourth lecture on the feedback control. In this lecture, we will

complete the proof of the theorem which we have started in the previous lecture.
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In lecture II of the feedback control, we have seen the following result, that is if you consider the

equation x dot=Ax+bu where A is n*n matrix and b is n*1, it is a column matrix and u is a

feedback control where k is a column, kn, kn-1, k is a row vector which is unknown and S is a

set mu 1, mu 2, etc., mu n be any set of numbers, real or complex number.

Then if the system is controllable, it was shown that if 1 is controllable, we have shown that we

can find the feedback matrix k such that the eigenvalues of A+bk are mu i, i=1, 2, 3, up to. So

this was the result which we have already proved. And the procedure how to find the matrix k

was also shown earlier. So in this  lecture,  in the previous lecture,  we have started the same

theorem for the general case, that is where A is n*n matrix and b is a n*m matrix.
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So that we will see. So we will see that let X dot=Ax+Bu be the system, be the given control

system and here A is n*n. So same statement, only the difference is the B matrix is n*m. S is any

set mu 1, mu 2, mu n and the feedback control u is k*x, here k is according to the size of the A

and B, it is n*m matrix, m*n matrix, okay.

So the theorem statement is if the system is controllable, then we can find the feedback matrix k

such that A+B*k has eigenvalues mu i. So there is no change in the statement except the matrix

B. So for proving this, we have already proved a lemma in the previous lecture. It is in the last

time, we have shown that.
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So if the system is controllable, if the system x dot=Ax+Bu is controllable, then we can find a

matrix k1. In this case, it is of the size m*n, okay, m*n matrix such that the system; now we

construct a new system, that is x dot=A=B*k1*x+b1*v, okay. We change the notation for control

instead of u. Here u is a vector belonging to Rm and here v is the real number, v of t is a real

number.

So it is a single input system. So what we have done is from the original system, what was given,

we have converted into a system of this type the control matrix is a column vector only, okay. So

this is in the form which we consider in the second lecture, like b is a column vector. So we have

already shown that we can find a matrix k1 such that this system is controllable. Here b1 is the

first column of the matrix B. So if B matrix is b1, b2, etc., bm.

So if you take, if the first column is non-0, we can convert the system into this expression. And

we have already discussed if the first column is a 0 vector, then how to take another non-0 vector

from the B matrix and then convert the system. So this was discussed. So we assume that b1 is a

non-0  vector  and so  we convert  the  given  system into  this  system.  Now we can apply  the

theorem which was already proved for this type of system.

So the system 2 is controllable, already it is done and we have a matrix k1 also. Now since the

system 2 is controllable, so this implies there exist or we can find a matrix, let us say k2 bar, a

row vector so that is like kn, kn-1, etc., k1 as proved in the first theorem, that is if B is a column,

then we can find a matrix k so that, such that. Now the matrix control, the state matrix is A+Bk1

and the control matrix which we are having is k2, so we can show that such that A+Bk1 is the

matrix already given, +b1*k2 bar.

So it is a n*n matrix. This is also n*n, b1 is a n*1 matrix and k2 bar is a 1*n matrix, so the

product will give n*n. So this has eigenvalues mu i, i=1, 2, 3, up to n. So by using the previous

theorem, this  theorem. So now we are interested in finding a feedback control  for u,  that  is

u=K*x type of thing.
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So for finding this K, we make use of this result. So we have A+Bk1+b1*k bar has eigenvalues

this. So let us try to convert it into this form A+Bk1 is already there and in the place of b1, we

will write, b1 is the first column, already there and we take all the other columns of b matrix,

okay. And the first row is from this equation b1 is the column and k2 bar is a row vector. So let

us take k2 bar as the first row and remaining rows are all 0. 

We take a matrix like this. It is m*n matrix.  It is n*m. So ultimately, the product will  give,

because all the second, third, all the rows are 0. The product will give the same effect as b1*k2

bar. So we can write it as B*some matrix like this. A+BK1 is as it is. This one can be written as

B and this can be written as K2 matrix. so this can be written as A+B*K1+K2, okay. So this

K1+K2 is the required matrix K. K is nothing but the K1+K2. 

So this implies, so it is in the form A+BK. So K is K1+K2 is the required feedback matrix, okay.

So this theorem is proved for the general case where A and B are.
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Now we will just illustrate it with an example quickly, that is in the example. So this we have

already taken. This particular example was done in the previous lecture 1 0 1, and 0 1 -1 and B is

the matrix 1 2 1, 0 1 1. So we can easily check that B, AB, A square B, the rank is 3. So it is

controllable system. And let us take S to be any set, for example, -1, -2, -3. So now we want to

find the matrix K such that the eigenvalues of A+BK are the same -1, -2, -3. So how to find this

K, that was explained in the previous slides.

So quickly if you recall that, so we already have seen that in the last lecture that the matrix K,

there  exist  a  matrix  K1 which  is  given by this  matrix  0  0  0  1  0  0  such that  the  system x

dot=A+BK1*x+b1, their first column of B matrix, *v of t is controllable. So this was already

shown. So here A+BK1 matrix, if you calculate the matrix, we will get 1 0 0 and 2 0 1 1 1 -1 by

substituting these matrices.

And b1 is the first column of the matrix b, it is 1, 2, 1. And so this system is controllable. Now

by using the companion form and the theorem of feedback control, we can find the T such that,

now we can find T which is of the form, the first row is a. The second row is a*A+BK1. The

third row is a*A+BK1 square.  It is  a 3*3 matrix,  non-singular matrix  such that  TA+BK1*T

inverse will be the companion form.

And T*b1 is 0 0 1, in the standard companion form, it can be converted. Then we can find the



expression, this a can be found out using this matrix. So now the a vector, the first row of this T

matrix is nothing but 0 0 1*U inverse. What is U inverse? It is the controllability matrix obtained

from this one, B, AB, etc. here. Where the matrix U is obtained from the first, that is b1. In the

system, the control matrix is b1 and A+b1*b1, etc. we will get.

And A+BK1*b1 will give 1 3 2. And A+BK1 square*b1 will give the element 1 4 2. So this is of

rank 3 and its inverse will exist. So this will imply that a bar, the vector, the first row of the T

matrix is given by this entry, -1 1 and -1. We can multiply and then get this value like this. So

once you have obtained the first row of T matrix; second, third row can be obtained from the

formula.
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So that implies that T matrix is calculated as -1 1 -1 and 0 -1 2 and 0 2 -3. After substituting the

proper values in T matrix, we get this one. Now we want to find this feedback control for this

expression that is  we want to find the K2 matrix so that we ultimately find K1+K2. So for

finding K2, we adopt the following procedure. So we are interested in getting, we want to get

eigenvalues -1 -2 -3 for the converted system.

So that implies the characteristic equation is lambda+1, lambda+2, lambda+3=0. So that will

imply that we get, this is lambda cube+6lambda square+11lambda+6=0. So the notation of the

previous lectures, we see that beta 1 is 6, beta 2 is 11 and beta 3 is 6 again. And the companion



form  will  give,  the  companion  form of  this  matrix  A+BK  matrix  or  you  can  say  that  the

characteristic equation of A+BK1 matrix.

So that is given by directly if you calculate, you will get lambda cube-2lambda+1=0. So from the

standard notation, we get alpha 1 is 0, lambda square term is not there, alpha 2 is -2 and alpha 3

is 1.  So if  you recall  from the second lecture of this  one, feedback control,  we see that the

expression gamma value, gamma i is alpha i-beta i. So that will imply that alpha 1 is -6, sorry

gamma 1. So we get gamma is -6, gamma 2 is -13 and gamma 3 is -5.

(Refer Slide Time: 23:09)

So from this calculation, we will get, finally we get then again recall the method which we have

seen in the second lecture that is gamma*T inverse, the row vector K is given by gamma*T

inverse.  So  once  we  calculate  this,  then  we  can  calculate  the  K2  vector  which  we  require

actually. This procedure, we are defining this K2 vector where K2 vector is the first row is the

matrix which we found and all the other rows are 0.

So after finding this K2 bar, we will put this K2 bar in the first row and then all the remaining

rows are 0, is a matrix m*n matrix, okay. So then the required matrix is K1+K2. So this can be

calculated  by, because  all  the  values  are  available.  Gamma is  there,  T inverse  is  there.  By

substituting, we get the feedback matrix. So if we substitute this, so the feedback control, the U

of t which belongs to Rm, that is K*x of t.



So the feedback control is given by U of t=K*x of t. And the matrix A+B*K has eigenvalues -1

-2 -3. So this can be easily verified by actually calculating the eigenvalues. So now if you see

here, the main assumption in this theorem is that the system x dot=Ax+Bu is controllable. But in

case the system is not controllable, then is it possible to find a feedback control in this similar

form? So that we will briefly see because we have some procedure for controllable system.
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And now we will  reduce the non-controllable  system into a system which has  2 parts.  One

portion is controllable portion. Another portion is non-controllable  portion.  And then we can

apply the same theorem for one portion that is which is controllable portion, okay. So consider

the system X dot=Ax+Bu which is not controllable. So that means the rank of the matrix, the

block, first block is B, second block AB, and A power n-1B, this rank is equal to, let us say r

which is less than n.

So then can we apply a similar theorem? Can we find a feedback control that is the question

here? Now let us consider the matrix like this. So let R be the matrix containing, because the

rank is R here, we can select R columns from the matrix U. Let us call it as U matrix where U is

B, AB etc. The size of the matrix is n*m*n but only R columns are linearly independent because

rank is R.



So we select any R column which are linearly independent from that. And put it as a matrix

containing.  So let  R be the matrix  containing the linearly independent  columns of U or any

linearly independent columns we can select, R of them are available. So let R=the first column is

r1, second column is r2 and r suffix r. This notation is not.
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So now let us take a matrix P such that it contains the linearly independent columns are linearly

independent columns given by, let us say P1, P2, etc., P suffix r. And so let us take Pr+1, Pr+2,

etc., Pn are remaining linearly independent vectors which generate the entire space such that the

entire set P1, P2, etc., Pr that is already taken from the U matrix and Pr+1, Pr+2, etc., Pn. And so

this forms a basis of the space Rn.

So let us write the matrix as, let us consider the matrix P1, P2, okay, the block of this one. Here

the notation we can consider, instead of P, we can consider as P1 and P2 is the remaining matrix,

okay, where P2 is given by Pr+1, etc., Pn. So the column vectors are like this. So it is a matrix

n*n-m matrix and this is a square matrix n*n matrix. And P1 matrix is n*r matrix. I think there is

some notation problem. r+1 etc. rn, 1 minute. You can cut it little bit. n-r. So we have the matrix

as P1 of this size and P1P2 forms a matrix P, okay.
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So now consider the equation X dot=Ax+Bu. If you multiply both sides by this P inverse matrix,

we get P inverse Ax P inverse Bu and if you let y=P inverse x here, we get, from this equation,

we get, y dot=P inverse A, x can be written as Py and +P inverse Bu, okay. So let us write this P

inverse the matrix, another matrix Q1 Q2 as a block matrix. The first block contains r rows and

the second block contains, so Q1 is a r rows and n columns and Q2 contains n-r rows and n

columns.

So if P inverse and P, that is identity matrix and if you actually multiply P inverse and P matrix,

we will get Q1*P1 and Q1P2 Q2P1 and Q2P2, these are block matrices. Q1 is of the size and P1,

we have already seen. It is n*r. So the first one is the square matrix r*r matrix. So accordingly we

can find the size of this one. So if identity matrix also should be divided into I. This will be r*r

and this is the remaining n-r *n-r size.

The remaining are 0. So from this notation, what we get is Q1P1 is identity and Q2P2 is identity.

The remaining are 0 matrices. So in particular, we are interested in this Q2P1 is the 0 matrix,

okay of the proper size. Whatever size we have. Now if you observe, this P1 matrix contains all

the vectors which are in the controllable matrix B, AB, etc. This equation, Q2*P1=0, it implies

that all the columns of P1 and the rows of Q2, they are orthogonal to each other. 

Because the row of Q2 multiplied by a column of P1 gives the 0 element. So it implies that Q2 is



orthogonal to the columns of P1. So that can be utilized. And if we observe this U matrix, it

contains, it is generated by the columns P1, P2, Pr. So all these matrix, AB, A square B, A power

n-1 B, all these columns are generated by the elements of P1, P2, Pr because there can be only

maximum r linearly independent columns for this. 

All the columns are generated by P1, P2, Pr. So the matrix B, AB, A square B, all the columns

are generated by the vectors P1, P2, Pr. So here Q2P1=0, it automatically implies the various

other things.
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If we observe this equation y dot=P inverse APy, y dot=, P inverse is written as Q1Q2 and A is

there. P is written as P1, P2*Y+, again P inverse that is Q1Q2, *B*U. So this is the equation in

this notation introduced in this page. So this implies that Q1Q2, the first matrix, *matrix A*this

block, y dot=Q1Q2 and this product will give AP1 is the first block and AP2 is the second block,

*the vector y and this can be written as Q1B is the first block and Q2B is the second block, *the

vector U.

So again,  we multiply  the  Q1 block with  the  AP1.  So this  will  give  Q1AP1 and Q1*AP2,

Q2AP1, and Q2AP2; *the vector y and this is as it is, Q2, sorry Q1B and Q2B, *U vector. So

now we can, I make use of the thing here, Q2P1=0. It means the rows of the matrix Q2, they are

all orthogonal to all the vectors P1, P2, etc. And so that implies, this step itself will imply that



Q2*B=0.

Because B also is part of the U matrix and all the columns of U matrix are generated by P1, P2,

Pr. So if Q2 is orthogonal to all these P1P2, it should be orthogonal to B as well as AB, A square

B, etc. So this implies that Q2*B is 0, Q2*AB will be the 0 matrix, etc. So we can easily get this

expression Q1AP1 and Q1AP2. But here, Q2 is orthogonal to all the elements, all the columns of

U. So AP1, AP2, all of them are columns of U. 

So this will be the 0 block and here, it is Q2AP2, we get y. And here it is QB, but Q2*B is 0,

okay, 0 block by the previous one. So this separates the system into very simple form like this.
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So if we write y to be, it is an Rn vector. We will write it as y1 vector and y2 vector, first R

elements are called y1. The remaining n-r elements are called y2. So if you write like this, then

we  get  from  the  previous  page,  we  will  get  y1  dot,  the  derivative  of  y1  is

Q1AP1*y1+Q1AP2*y2+, here Q1B*U vector we will get, okay. Similarly, y2 dot will be 0*y1,

so that will not come.

Q2AP2*y2+0, so we will get the simple form y1 dot=that is Q1AP1y1. So y1 dot is Q1AP1*y1,

this matrix, +Q1AP2*y2 matrix, +Q1B*U, okay. Similarly, y2 dot, it will be Q2AP2*y2 and +0.

So this system, we can see that there is no control at all. Simply it is a separate system. It is a



dynamical  system and  only  first  system is  having  a  control.  So  this  system is  controllable,

actually this y1, it belongs to a R dimensional vector space and we already saw that the system is

controllable because the rank of the controllable matrix is R here.

It is equal to the control space. So this system is controllable. It is divided into 2 systems. The

first system is controllable and the second system has no control at all. So it is not controllable.

Now we can  find  a  feedback  control  for  it.  Because  the  first  one  is  controllable.  So  since

equation 1 is controllable because we can assume that this y2 is a known quantity. We can easily

solve this differential equation 2 and then substitute the value of y2 in the first equation.

So only y1 is the state variable for the first equation and U is the control variable and y2 is a

known value because of the dynamical system. So this system is controllable due to the rank

condition. One is controllable. We can find suitable feedback control using the previous theorem

for the controllable systems. So we can make use of this theorem for controllable system and

find  the  appropriate  feedback  control  for  any  required  eigenvalues  of  this  thing.  So  I  will

complete this lecture with this example. Thank you.


