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Stability of Weakly Non Linear Systems - II

Hello friends. Welcome to this lecture. In this lecture, we will continue our study of stability

of  nonlinear  system.  So if  you recall  in  previous  class,  we are  discussing  the  following

system of differential equation that is x dash=Ax+gx where x is n x 1 vector and is n x n

matrix and g is the n x 1 matrix function.

(Refer Slide Time: 00:53)

It is given as gx=g1 x to gn x and here we are assuming that the nonlinearity given by the

function g of x say is small  compared to the linear part that is A of x. So here we have

assumed that  gx is  a  function such that  gx/norm of  x is  (())  (01:20)  gi  x/norm of  x are

continuous function of x1 to xn and vanishes for x1 to xn=0. So here by putting this condition

that g of x=0 for x=0 simply says that x=0 is an equilibrium solution of the system 1.
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And  here  and  we  call  this  kind  of  a  system as  weakly  nonlinear  system  and  we  have

discussed, we have started proving the theorem number 1 which says that suppose the vector-

valued function gx/norm of x is a continuous function of x1 to xn which vanishes for x=0.
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Then, the part a that the equilibrium solution xt identically=0 of 1 is asymptotically stable if

the equilibrium solution of xt  identically=0 of the linearized equation that is dx/dt=Ax is

asymptotically stable and we have already seen that the system of linear equation dx/dt=Ax

every solution of this will be asymptotically stable provided that all the eigenvalues of A have

negative real part.

So  it  means  we  can  say  that  we  summarizes  these  two  fact  then  we  can  say  that  the

equilibrium solution xt identically=0 of 1 is asymptotically stable if all the eigenvalues of A



have negative real part. So and the part b says that the equilibrium solution xt identically=0 of

1 is unstable if at least one eigenvalue of A have positive real part, so this is the b part.

And c part is that the stability of the equilibrium solution xt identically=0 of 1 cannot be

determined from the stability of the equilibrium solution xt=0 of dx/dt if all the eigenvalues

of A have real part<=0 but at least one eigenvalue of A has zero real part and in last lecture

we have discussed say two examples based on the part c.
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In fact, we started with part c and we have shown that in this part when dx1/dt=x2-x1*x1

square+x2 square, dx2/dt=-x1 –x2 x1 square+x2 square. In this case, your coefficient matrix

of the linearized system has zero real part.
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And here we have seen that the solution is asymptotically stable.
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But if  we just  perturb our system of differential  equation like this that  dx1/dt=x2+x1*x1

square+x2 square and dx2/dt=-x1 –x2 x1 square+x2 square. If you look carefully, then the

associated linear system is same and the eigenvalues of A is having zero real part and in

previous question we have shown that the zero solution is asymptotically stable solution but

in this case your zero solution, the equilibrium solution x1 t=0 and x2 t=0 is an unstable

solution.

So it means that if you are discussing dx/dt=Ax+g of x where x satisfying the condition that

g0=0 and gx/norm of x is a continuous function of x and it vanishes as x=0. Then, we cannot

conclude anything if eigenvalues of A, all the eigenvalues of A are nonpositive and at least

one of the eigenvalues has zero real part. So in that case, we cannot conclude anything. Now

let us prove the result for the first two cases.

That is that eigenvalues of A are having negative real part for all the eigenvalues and if at

least one of the eigenvalues have positive real part. So let us prove in the case of 1 and 2.
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So we may observe that any solution xt of 1, here 1 is this x dash=Ax+g of x, here we can say

that this any solution of this maybe written in the following form that xt=e to power At x of

0+0 to t e to power A t-s g of x s d of s and here we have used the variation of parameter

method. In fact, we know that we can write down the solution of x dash=Ax as say this is the

fundamental matrix xt*that constant function c.

So your xt homogenous part can be written as xt*c and then by varying the c we can find out

the solution of this and this is I think we have already discussed in one of the lecture. So we

can say that here taking this fundamental matrix solution xt as e to power At we can write

down the solution of x dash=Ax+gx as follows that is it is xt=e to power At*x at 0+0t e to

power A t-s g of x s ds.

And here since we are looking for the asymptotic stability of zero solution, it means that we

are looking at that this zero solution is a stable solution and any other solution which start in

the neighborhood of zero solution will tend to zero as t tending to infinity. So this we can

prove provided that norm of xt is tending to 0 as t tending to infinity can be proved. So our

focus is to prove that norm of xt is tending to 0 as t tending to infinity okay.
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Now as we have observed in the case that if all the eigenvalues of A have negative real part,

then we can find out a constant k and alpha in a way such that this e to power norm of e to

power At is bounded by Ke to power –alpha t, so that we have already discussed in previous

few lectures. Now here using this let us find out the upper bound of norm of e to power At*x

of 0 which is nothing but<=norm of e to power At*norm of x0.

Norm of e to power At is bounded by Ke to power –alpha t. So we can say that norm of e to

power At*x0 is<=Ke to power –alpha t norm of x0. Now once we have this now let us look at

because here if we have two terms, one term is here, another term is inside. So this can be

bounded by Ke to power –alpha t norm of x0. Now look at the integrant basically e to power

A t-s g of x s.

Here in a similar way we can say that norm of e to power A t-s g of x s is<=Ke to power –

alpha t-s norm of g of x s. So here we have shown we have found the upper bound here. Now

still it is not sufficient because it is quite difficult to say simplify this expression 4.
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So here we also use the following thing that we can find a positive constant beta such that

norm of gx is<=some constant*norm of x and if norm of x is<beta and this follows from the

fact that this gx/norm of x is continuous and vanishes at x=0. So how we can obtain this if

you look at the continuity of gx/norm of x. So we can simply say that norm of g of x/norm of

x-0  because  it  is  vanishing  at  0  is<epsilon  whenever,  so  continuity  says  that  for  every

epsilon>0 there exists a delta>0.

Such that this quantity is<epsilon whenever norm of x is<delta and this is what this I can

write it gx/norm of x is<epsilon. So now for this particular problem let us choose epsilon as

alpha/2k. We will see that why this alpha/2k I have taken. You can take any constant, later on

we can fix that. Now this delta let us say call it beta here.

So we say that since gx/norm of x is a continuous function and continuous function for norm

of x and continuous function of x and it is tending to 0 as x is tending to 0. So with the help

of this, we can say that norm of gx is<=alpha/2k*norm of x provided that norm of x is<=beta

here. So corresponding to alpha/2k we can find out delta and let us call that delta as beta.

So it means that using continuity, we can write that norm of gx is<=alpha/2k*norm of x if

norm of x is<=some beta. Now that beta is depending on this alpha/2k here.
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Now once  you  have  all  these  things  then  we  can  look  at  our  solution  that  is  norm of

xt<=norm of e to power At x0+0 to t norm of e to power A t-s g of x s ds. Now this quantity

is<Ke to power –alpha t*norm of x0+0 to t. Now this is<=e to power –alpha t-s. Now this

norm of g of x of s is<alpha/2*norm of x. Now that one K like here it is e to power A t-s is

bounded by Ke to power –alpha t-s and norm of g of x of s is bounded by alpha/2k norm of x

of s.

So this K will be canceled out here and you will get alpha/2 0 to t e to power –alpha t-s norm

of x s d of s. Now here this inequality will be true provided that norm of x is<=beta where s is

lying between 0 to t here because s is lying between 0 to t here. So if you further simplify in

fact we can multiply on both the side by e to power alpha t and then we can have e to power

alpha t norm of xt is<=K times norm of x0+alpha/2 0 to t e to power alpha s norm of x s ds

here.
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So this we can further simplify by taking zt=e to power alpha t*norm of xt and then we can

write it zt is<=K times norm of x0+alpha/2 0 to t z of s ds here. So here we want to find out

the bound on z of t here. So here we have two ways, either you use directly the Gronwall’s

inequality if you know, otherwise we can solve this by taking let us say ut as say alpha/2 0 to

t z of s d of s here.

So  the  only  thing  is  that  we  cannot  solve  for  zt  by  just  differentiating  it  because

differentiation of the inequality may not be preserved here. So to solve this, we let us assume

that ut=alpha/2 0 to t z of s d of s. Then, we can write down u dash t is=alpha/2 here and it is

z of t here. So we can say that we already know that zt is<=this quantity, so we can write u

dash t=alpha/2 zt is<this quantity, so it is K of norm of x0 and +alpha/2.

Now this quantity is what, this quantity is your ut, so let me write it here. So this is what u

dash t-alpha/2 u of t is I think this is<=this is<=so this is<=alpha/2 k times norm of x of 0

here. So what we have done here, we just assumed this quantity as u of t and then we have

evaluated the derivative of this that this u dash t=alpha/2 zt. Now zt we know that the upper

bound of zt is what, zt is bounded by K times norm of x of 0+this is ut here.

So now using  the  bound of  zt  I  can write  down u dash t  is<=alpha/2  K times  norm of

x0+alpha/2 u of t. So we can write down u dash t-alpha/2 ut is<=alpha/2 K times norm of x0.

Now here this we can solve in terms of ut here. For that we simply multiply by e to power

alpha t/2 here. If you multiply here, then I can write this as d/dt of this is what let us say –sign

here, then this will give you what e to power –alpha t/2 ut.



If you differentiate this what you will get, this ut and differentiation of this will be what, e to

power  –alpha  t/2*-alpha/2  and  if  you take  this  as  e  to  power  –alpha  t  and ut  now this

is<=alpha/2 K times norm of x0*e to power –alpha t/2. So what we have done we multiplied

by e to power –alpha t/2 then this left hand side is reduced to d/dt of e to power –alpha t/2 ut

and right hand side we have written alpha/2 K times norm of x0 e to power –alpha t/2 here.

Now let us so we are solving this d/dt of e to power –alpha t/2 u of t which is<=alpha/2 K

times norm of x0 e to power –alpha t/2 and this we can solve as follows.
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We can write down d/dt of e to power –alpha t/2 u of t<=e to power –alpha t/2 alpha/2 K

times norm of x0 here. Now this we can take it in left hand side and we can write d/dt e to

power –alpha t/2 ut-alpha/2 e to power –alpha t/2*K times norm of x0 is<=0 here. Now this

part I can write as d/dt of e to power –alpha t/2 K times norm of x0. So using this we can

write down this as d/dt e to power –alpha t/2 ut+K times norm of x0<=0 here.

Now we simply integrate with respect to t from 0 to t, so we have e to power –alpha t/2 ut+K

times norm of x0<=putting the value 0 here. Then, e to power –alpha 0/2 is simply 1 that is

u0+K times norm of x0. Now what is u0 here, so u0 you can simply find out using this that

ut=alpha/2 0 to t zs ds. Now if you put t=0 here, then this integral will vanish, this whole

thing will vanish and you can get the value of u0=0 here.



So we can get that e to power –alpha t/2 ut+K of x0 is given by this is simply 0 K times norm

of x0. So here we can get the value of ut that ut+K times norm of x0 is<=e to power alpha t/2

K times norm of x0 and if you look at this is the bound of zt. So zt is bounded by e to power

alpha t/2 K times norm of x0. So that  is  what we have obtained from zt here,  that zt  is

bounded by e to power alpha t/2 K times norm of x0.

So we can say that from this inequality if we solve we can get that zt is<=e to power alpha t/2

K times norm of x0 here. So that is what we have achieved here e to power alpha t/2 K times

norm of x0. Now what is xt here, so from this we can find out xt is e to power –alpha t*zt

here. So norm of xt is=e to power –alpha t*norm of zt and that we can write it here that K

times norm of x0 e to power –alpha t/2 you will get provided that norm of xs is<=beta but s is

lying between 0 to t. So we can say that from this we can write it here.

That if so what we have achieved here let me write it here that norm of xt is<=K times norm

of x0 e to power –alpha t/2 provided that norm of xs is<=beta where s is lying between 0 to t.

Now here now our claim is that this  will be automatically true if we assume that x of 0

is<some quantity. Now here we can say that e to power –alpha t/2 is basically<1, so we can

say that norm of xt is<=K times norm of x0.

So if we choose our x0 suitably then your x of s will be<beta for s lying between 0 to t here.
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So it means that if I choose that norm of x0 is<beta/K, then we can say that norm of xt

is<=here we have written it is K times x of 0, so it is K times norm of x of 0 here. So we



simply say that if x0 is<beta/K then you can say that norm of xt is<=beta here beta times

norm of yeah beta. So if norm of x0 is<beta/K, then your norm of xt is<=beta for all t>=0

here, so it means that the previous this inequality is always true for all t>=0 here.

So it means that the restriction that norm of x is<=beta can be realized can be met if we

assume that norm of x0 is<=beta/K because in this K norm of xt is always<=beta for t>=0. So

this condition is now met automatically that norm of x is<=beta. So this if you say that norm

of x0 is<=beta/K then norm of x of t is<=K times norm of x0*e to power K times norm of x0

e to power-alpha t/2.

So here this inequality is always true for all t>=0 if norm of x0 is<beta/K. So finally we

observed that norm of xt is<=K times norm of x0 e to power –alpha t/2 and then we can say

that  norm of  xt  is  tending  to  0  as  t  tending  to  infinity  and  hence  we  can  say  that  the

equilibrium solution  xt=0 is  asymptotically  stable  solution.  So  this  says  that  it  is  stable

solution.

And then because of e to power –alpha t/2 term is here as t tending to infinity this term will

vanish to will tend to 0 very fast and we can say that xt will tend to 0 as t tending to infinity

and hence we can say that xt identically=0 is an asymptotically stable solution. So what we

have proved that if eigenvalues of A, if all the eigenvalues of A have negative real part then

the solution zero solution of x dash=Ax+gx is asymptotically stable solution.

Now here regarding the proof of b, this proof is quite lengthy and involving. So here we can

assume the proof without proving it here and so it means in this way we can say that we have

done, we have considered all the cases, case a, case b and case c here. So now with this, we

have completed the theorem. Now let us consider the application here. So in this proof, we

have just discussed the stability of equilibrium solution which is identically=0.

Now how we can utilize this theorem to discuss the stability of nonzero equilibrium solution.

That we are going to discuss in next few slides. So now we say that this theorem 1 is also

useful in determining the stability of equilibrium solution of arbitrary autonomous differential

equation.
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So let x0 be an equilibrium solution of the differential equation dx/dt=f of x. Now this x0

may not be a 0, if it is a 0 we have the result we can get it but if x0 is nonzero let us see how

we can say utilize our theorem 1 to discuss the stability of equilibrium solution here. So now

we simply shift our origin and we simply write zt as xt-x0 here. So using this now I can write

z dash t is=x dash t- since x0 is equilibrium solution, so x0 dash is simply 0.

So z dash t=x dash t. Now z dash t=we can simply write dx/dt and dx/dt is already given as f

of x. Now x can be replaced as zt+x0, so we can say that now we can have z dash t=f of x0+z

here. Now what is the change in equation number 5 and this equation number 6 here, that

here your equilibrium solution of 5 is x0, it means that f of x0 is=0 here but if you look at the

system 6 here if you say that z=0 is an equilibrium solution here because when you put z

identically=0 then it is nothing but f of x0 and we know that it is 0.

So it means that we are able to convert a problem where we have a nonzero equilibrium

solution  to  a  problem where  we have 0 as  an  equilibrium solution  here.  So this  is  now

converted into z dash t=f of x0+z. Now we can say that here this can be converted into a form

which you have discussed earlier that is z dash t, we want that if we impose certain condition

on f here, then this f of x0+z may be written as A of z+some g of z where Az is a linear part in

z and gz is something that g of 0=0.

And gz/z  is  a  continuous  function  of  0  and vanishes  at  z=0.  So we need  to  find  out  a

condition on f such that we may write it like this. So here let me write it here that clearly zt=0



is  an equilibrium solution  of  6  and the stability  of xt  identically=x0 is  equivalent  to  the

stability of zt identically=0 here.
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So here we have the following lemma by which we can say that we can convert, we can write

down  the  expression  f  of  x0+z  as  f  of  x0+Az+gz  here  where  gz  satisfy  the  property

mentioned in the previous theorem that is gz/norm of z is a continuous function of z and

vanishes for z=0 here. So the condition we are putting on f is the following that let fx have

two continuous partial derivatives with respect to each of its variable x1 to xn.

Then, f of x0+z may be rewritten as f of x0+z=f of x0+Az+g of z here. Now I am giving you

these are the sufficient condition we impose on f here. Here we may consider only that this

thing that first-order partial derivative exist continuous and second-order partial derivative

simply exists, then also we can write down f of x0+z=f of x0+Az+gz here. The following

lemma this lemma has several proof.

We are just using one result we simply here we have written z dash t=f of x0+z here. Now we

already know that this f of x0 is=0 here. So I can write this as f of x0 here right. Now since f

of x0+z-f of x0. Then, using your mean value theorem I can write this as f of x0+some theta z

here where theta is lying between 0 and 1 here and so here now so this can be written as z

dash t=f of x0+theta z.

Now here we are assuming sorry it is with respect to the derivative with respect to x here.

Now sorry it is a function of z. So fz x0+theta z it is given here. Now we have assumed that



this has continuous partial derivative, so it means that this implies that let limit theta tending

to 0, your fz x0+theta z is nothing but z of x0 here, sorry it is z tending to 0. So limit z

tending to 0 fz x0+theta z is=fz x0 or I can write here fz x0+theta z=fz x0*z+some gz here.

Now this implies that gz is tending to 0. So this implies that limit gz is tending to 0 as gz/z is

tending to 0 as z is tending to 0 here. So this is one way to look at the say proof of this.

Another way to write down the proof is using Taylor’s theorem. Then, since f is what, f is f

x0+z is nothing but we can write it f1 say x0+z f2 x0+z here and fn x0+z here. Now for each

fi we can write down say fi x0+z as your fi x0+now here we can write down z1 dou fi/dou

z1+1 zn dou fi/dou zn+the high order term.

Now this is nothing but okay and similarly we can write down for each i, i=1 to n here. So it

means that I can write down let me write it here.
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That for each i fi x0+z is given as fi x0+your z1 dou fi/dou z1+z2 dou fi/dou z2 and so on zn

dou fi/dou zn+high order term. So this I can write it for each i, i=1 to say n. So we can simply

say that in particular I can write f of x0+z as this is f1 x0 to say fn x0+now this let me write it

here. This is what dou f1/dou z1 to dou f1/dou zn and to dou fn/dou z1 to dou fn/dou zn*z1 to

zn here+high order term.

Now high order term means involving the say squared terms of z1, z2 and zn’s and multiple

of this. So it means that here your gz will be containing say polynomials in terms of zi’s of

degree more than 2 here. So this means that this is your f of x0 here, this we denote as A and



this is z+whatever left is your gz here. Now gz contains say polynomial terms in terms of z1

to zn of degree 2 or more here.

So this is what we have written here x0+z I can write it like this. So that is what is given here

that if fx have two second-order continuous special  derivative with respect to each of its

variable x1 to xn then f of x0+z may be written as f of x0+z=f of x0+Az+gz here. So here we

are not assuming anything on any condition on x0 but if we assume that f of x0=0 then we

can do it by same mean value theorem also and the continuity properties here.

But here in general if fx contains the, fx has the second order continuous partial derivative

then we can rewrite f of x0+z as f of x0+Az+gz here. Now since f of x0 is 0 then I can write

this the previous problem z dash t=f x0+z dash Az+gz where gz contains the term in terms of

z1 to zn with power 2 or higher. So here we can rewrite we can apply our theorem 1 for

general nonlinear system also where we want to check the stability of an equilibrium solution

x0 here.

So with this we finish our lecture here and next lecture we will discuss some example based

on this observation and discuss the stability of an arbitrary equilibrium solution and that we

discuss in next lecture. Thank you very much for listening us. Thank you.


