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Hello  friends.  Welcome to this  lecture.  In  this  lecture,  we will  continue  our  study from the

previous lecture.  In previous lecture,  we have discussed the method to find out fundamental

matrix solution. In fact, we have defined what is fundamental matrix solution and we have seen

certain properties of fundamental  solution.  For example,  if  you have any nearly independent

solution of x dash=Ax, then you can form a matrix.

And we can call that matrix as a fundamental matrix solution. And also we have shown that any

matrix  is  said  to  be  a  fundamental  matrix  solution,  provided  that  x  dash=,  it  satisfies  this

differential  equation, x dash=Ax. And determinant of that matrix is non-zero for all  t  in that

particular interval. Then we call that matrix as a fundamental matrix solution and based on that

we have proved that e to power At is also a fundamental matrix solution.

And also that we have shown that, if we have two fundamental matrix solution, X(t) and Y(t),

then they are related by a non-singular matrix and we can write one fundamental matrix as a, like

Y(t)=X(t)*constant matrix C, where C is a non-singular matrix. Now we start after that,
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Now we proved that let  X(t) be a fundamental  matrix  solution of the differential  equation x

dash=Ax, then we can calculate e to the power At=X(t)*X inverse 0. In fact, if you recall while

in the beginning when we started solving this problem, x dash=Ax, then we have proved that that

e to the power At is a solution of this and corresponding to any vector e to power Atv is a

solution of this.

So  there  problem  of  finding  e  to  power  At  is  quite  difficult  and  we  have  obtained  some

alternative method to find out the solution, linearly independent solution of x dash=Ax, but now

with the help of those linearly independent solution, now we want to calculate this matrix e to

power At and so that e to power At into any vector of size nx1 will serve as a solution of x

dash=Ax.  So basically  we are  trying  to  find out  e  to  power At  with  the  help  of  a  linearly

independent solution of x dash=Ax.

So now we say that once we have a linearly independent solution x dash=Ax, then we can form a

fundamental  matrix  solution,  call  this  as X(t),  then we say that  that  e to  power At,  we can

calculate as X(t)*x inverse 0. So let us prove this theorem, which is proved like this that X(t) be

any fundamental solution of x dash=Ax, then using the previous lemma and the fact that e to

power At is also a fundamental solution that we have proved in previous lecture.



So we have shown that your X(t) is fundamental matrix and e to power At is also a fundamental

matrix. So it means that I can write X(t) as e to power At*C or I can write e to power At=X(t)*C,

where C is a non-singular matrix and we want to find out the value of this non-singular matrix.

Now for this, let us take t=0 here and when t=0, then e to power At is reduced to i and X(t) is

reduced to X(0) i*C.

Now since X is a fundamental matrix, so determinant of X0 is non-zero, it means that we can say

that X0 is an invertible matrix. So multiplying by X0 inverse throughout the equation, we can

say that your C is coming out to be X inverse 0. So we can say that once we have the value of X

inverse 0, then we can write down the fundamental matrix e to power At in terms of X(t) as e to

power At=X(t)*X inverse 0. So this is, this looks very tiny result.

But it is very powerful in the sense that from any fundamental matrix solution, you can calculate

e to power At by just writing X(t)*X inverse 0, okay and once e to power At is given to you, then

you can take any constant vector of size nx1 and you can write down the solution of x dash = Ax

as e to power At*that vector v.
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Now let us take one example, so that we can give the illustration of this theorem 1. So here in

example 1, we need to find out e to power At where A is given as 1,1,1 0,3,2 0,0,5. Now here, we

have  taken  a  very  simple  example  to  discuss  because  it  is  an  upper  triangular  matrix  and



Eigenvalues, you can easily calculate as 1,3, and 5. So here your lambda 1=1, lambda 2=3 and

lambda  3=5  and  since  it  is,  we  have  distinct  Eigenvalues,  so  Eigenvectors  we  can  easily

calculate.

We can calculate corresponding to one as 0,1,1 0,2,2 0,0,4 and you can write it A, B, C and you

can calculate that B+C=0 and C=0, so this implies that your B=0 and C=0. So we can find out

the Eigenvector corresponding to lambda 1=1 say 1,0,0. You can calculate it like this.
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Here we can say that to find out e to power and in this way we can proceed further. So let us start

with this solution procedure. So to find e to power tA, you first find out a fundamental matrix

solution of x dash=Ax and then we can use the result  of previous theorem and as we have

pointed out that A is an upper triangular matrix, and hence Eigenvalues of A are nothing but the

diagonal entries that is lambda 1=1, lambda 2=3, and lambda 3=5.

That we have just pointed out.  Now since we have 3 distinct Eigenvalues,  so corresponding

Eigenvectors  are  also  going  to  be  linearly  independent  Eigenvectors  and  hence  we  have  3

linearly independent solution of the form e to the power lambda t*v. So for lambda 1=1, we have

already obtained that 1 0 0 is an Eigenvector. So solution is given as X1t=e to power t*1 0 0.
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Similarly, we can find out solution corresponding to lambda 2=3 and lambda 3=5. So we can find

out that it is nothing but 1 2 0. Let us calculate the Eigenvector corresponding to 3. So for that

we simply say that A-3i will be what, A-3iv=0. So it is what -2 1 0, 0 0 2, and 0 0 2 and A, B,

C=0. So it means that here C is 0 and we can write -2A+B=0. So B=2A you can say. So we can

write down solution as, if A is 1, then B is 2, so 1 2 0 is 1 Eigenvector.

So it is written as 1 2 0. So in solution corresponding to lambda 2=3 is given as e to power 3t*1 2

0. Similarly, for lambda 3=5, A-say 5i*v=0 implies that it is, so it is, let me write it here. What is

the matrix, 1 1 1. So here it is -4 1 1 0 and 3-5, it is -2, 2 0 0. Here it is and it is some A, B, C=0

0 0 and here we can simply say that it is what, it is B=C and -4A+B+C=0 and in second, you can

get -2B+2C=0, so B=0. So -4A+2B=0. So B you can write it 2A.

So we can simply say that if we take A as 1, then it is 1 and then B is 2 and then C is again 2. So

here we can say that corresponding to lambda 3=5, Eigenvector is given as 1 2 2. So X3(t) is

given as e to power 5t. So now we can find out a fundamental matrix solution of x dash=Ax as

X(t) as X1 as first column, X2 as second column and X3 as third column. So X1t is e to power t

0 0 and X2(t) is e to power 3t 2 e to power 3t 0 and X3(t) is e to power 5t 2e to power 5t and 2e

to power 5t.

So we have obtained one fundamental matrix solution of x dash=Ax.



(Refer Slide Time: 10:12)

Now to find out e to power At, we need to use the formula e to power At as X(t)*X inverse 0. So

we need to calculate X inverse 0. So X inverse 0, so let us find out what is X(0). So X(0) is

nothing but, it is 1 0 0, say it is 1 2 0, it is 1 2 2 and we can find out the inverse using any of the

method whether it is usual method or Gaussian elimination method, any method you can apply

and you can find out X inverse 0 as this. So X1 inverse 0 is 1 -1/2 0, 0 1/2 -1/2, 0 0 1/2.

And you can simply say that here X zero has determinant non-zero. So X zero is invertible, so X

inverse 0 exists and now you can calculate e to power At as X(t)*X inverse 0 and which we can

calculate just like this. So here we can calculate e to power At in a very concise manner once we

know a fundamental matrix solution, otherwise calculating e to power At for matrix A is quite

difficult, because it is an infinite series and sum of infinite series is quite difficult.

So this infinite series is now converging to this matrix, which is given here. So in this way, this

calculating e to power At using a given fundamental matrix solution is quite useful, okay.
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Now there are several algorithms available to calculate e to power At. In fact, more than 3 are

available, but here I am just listing only one and this method is known as Putzer’s method of

calculating e to power At and the idea behind calculating e to power At is the Cayley–Hamilton

theorem. Cayley–Hamilton theorem says that it is basically Hamilton theorem says that every

square matrix satisfies 8 characteristic polynomials.

So it means that characteristic polynomial is characteristic equation is A-lambda i=0 and it says

that when you explain, you will get a polynomial in terms of lambda and by solving this only we

are getting the characteristic roots. So here Cayley–Hamilton theorem says that matrix A satisfy

this characteristic equation and with this we can say that the n-th power of any nxn matrix can be

written as linear combination of its lower power.

That is in terms of iA A square and so on. In fact, basically it is what, you can simply write this

as simply lambda 2 power n+An-1 lambda n-1+1+this A0 you can write it as 0 and when A

satisfies, then A to power n+An-1 A to power n-1 and so on, right and A0i=0. Now here we can

write down the An as linear combination of iA, A square up to An-1. So that is the idea we can

get from Cayley–Hamilton theorem.

That A to the power n can be written as linear combination of its lower powers. So if e to power

n can be written as linear say lower powers of iA, A square and An-1, so An+1 can also be



written as linear combination of iA, A square and An-1 and hence all the further powers of A may

also be expressed as a linear combination of iA, A square and An-1 and in this way, we can

simply say that e to power At can be written as powers of the matrix*some polynomial*powers

of matrix A.

So I can write e to power At as summation K=0 to n-1 qk(t)*A to power k. Now the coefficient

qkt are scalar polynomial t and based on this method, we suppose that there will be 2 useful

method to calculate e to power At as a polynomial in A, but here we will take only one, sample

of 1, if you want to discuss this, then I may refer a book by Tom Robusta. There you can get

both, there we can have more than 2 method to calculate this e to power At.

So I am just giving you one idea of this algorithm. In this method, we are not calculating e to

power At in direct powers of A to power k, but some function of matrix A. So here this theorem 2

gives the Putzer method to calculate e to power At.
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So theorem goes like this that let lambda 1, lambda 2, and lambda n be the Eigenvalues of nxn

matrix A, then we define a sequence of polynomials in A as follows: P0(A)=I Pk(A) is basically

product of A-lambda I, m is from 1 to k. So it is not given directly in terms of A, but it is lower

powers of A is given. So Pk is basically product of m=1 to k, A-lambda mI for k=1 to n. please

observe here that P and A is basically what.



Product of m=1 to n A-lambda mI and if you look at, this is basically product of what, product of

A-lambda 1I, A-lambda 2I, and so on it is A-lambda nI, and this is nothing but the value 0. So

Pn(A) is having value 0 and all other Pk(A) is defined like this. Then, we can write e to power At

in terms of linear combination of these PI(A) as follows: e to power At is written as k=0 to n-1,

rk+1t*Pk(A).

Where  the  coefficient  rk+1t  can  be  obtained  using  recursive  relation  of  system  of  linear

differential  equation  as  follows,  where  r1  dash(t)=lambda  1  r1(t)  r1(0)=1  and  r  dash

(k+1t)=lambda k+1rk+1t + rkt where rk+1 (0)=0 for k=1 to n-1. So if you look at these some

system of linear differential equation of first order and we can easily solve these scalar values,

linear differential equation of first order.

After solving these coefficients in a recursive manner and having Pk(A), we can calculate e to

power At. So first let us prove this and then we will certain example based on this theorem. So

let us prove this.
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So let r1 to rn(t) be the scalar function given by 2 and define a matrix function F by the equation

F(t)=k=0 to n-1 rk+1t Pk(A) that is what is here. This we assume as some F(t) and we want to

show that e to power At is your F(t) and here we use the existent and uniqueness theorem to



show the equality and here, please observe that the value of F(0) is r1(0) P0(A)=I. If you look at

here it is what F(0) is basically summation k=0 to n-1 rk+1(0) Pk(A). 

Now if you look at what is the value of rk+1(0), then go back here rk=1(0) is 0 for k=1 onward.

So it means that that r2(0) is 0, r3(0) is 0 and so on, so only non-zero value is attained at r1. So, it

means that when you put k=0, then we have r1(0) and P0(A) for all other values we have value 0.

The scalar coefficient r2(0), r3(0) these are all 0. So r1(0) P0(A) is basically, r1(0) is basically 1

and P0(A) is defined as identity as we define here.

So this means that F(0) is identity and F(t) is given as this. So here we want to prove that F(t)=e

to power At by using existent and uniqueness result of the initial value problem X dash (t)=AXt,

X(0)=I. If you look at here e to power At satisfies this initial value problem because e to power

At if you differentiate, then we will get A e to power At and e to power calculated at 0 is given as

I. So if we can show that F(t) also satisfies this differential equation.

That is F dash (t)=AF(t) and F(0) this we have already obtained that it is F(0)=I, then since this

initial value problem must have only unique solution, so F(t) has to be ideally equal to e to power

At for all t in that interval I. So that proves our result. So only thing we have to show now is that

F dash (t)=AF(t). For that let us differentiate this expression given in 3 and see what we are

getting.
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So differentiating both the sides of equation number 3, using the recursive relation 2, we have the

following thing. So F(t) is this and if you differentiate this, what you will get, let me write here,

F dash (t)=summation k=0 to n-1 r dash (k+1t) Pk(A). So this is independent of t, so only thing

you have to write down r dash (k+1). So k=0 means r1 dash (t), so let me use here r dash (k+1t)=

the following thing. So let me write it here and we can say that it is.

That lambda (k+1) rk+1t+rk(t) that is the expression for r dash k+1t and the Pk that we are just

putting. So now since here your summation starts from k=0 to n-1, So when you put k=0 we

have r0(t) and r0(t) we are defining it 0, why because for k=0, the expression is r dash t. So r

dash t is basically what r1 dash (t)=lambda 1, let me write it here, r1 dash(t) is basically r1 dash

is lambda 1 r1(t), so it is lambda 1 r1(t).

So it means that here your r0 is 0, we have assumed. So r0(t)=0 we are assuming and we can

write this expression. So now we simplify it little bit further and we write k=0 to n-2, first term

the rk(t)*Pk and this summation is starting from k=0 to n-1, but when you put k=0, then the

r0(t0), so actual summation will start from 1. So 1 means r1(t) onward. So rather than writing k

from 0 to n-1, we are writing as k from 0 to n-2 and we write rk+1(t)*Pk+1(A).

So here what we have done is this rk(t) and Pk(A) and that is k=0 to n-1. If you put, this is

nothing but k=1 to n-1 rk(t)Pk(A), because corresponding to k=0, your r0(t) is 0. So now you



simply replace in place of k, you can write it l+1, so it means that I can write here that this

implies that l value starts from 0 to n-2 and this is rl+1(t)Pl+1(A), that is what we have written

here that k=0 to n-2 rk+1(t)*Pk+1(A) and second term is as it is.

That is k=0 to n-1 lambda k+1rk+1(t)Pk(A). Now we want to show that f dash (t)-AF(t)=0. So

for that we can look at here.
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We have F dash (t), F dash (t)=summation k=0 to n-2. This rk+1(t) your Pk+1A+summation k=0

to n-1 and what is here. It is lambda k+1 rk+1(t)*Pk. So lambda k+1 rk+1(t)*Pk(A). Now look at

F dash (t)-AF(t).  So let  me write  it  here k=0 to n-2 rk+1(t)Pk+1(A)+summation k=0 to n-1

lambda k+1 rk+1(t) Pk(A)-A*F(t). F(t) is what k=0 to n-1, let me write it. This expression it is

rk+1(t) Pk(A). So that we are writing here rk+1(t) and Pk, right.

Now let us calculate this value. So here I will write it in summation k=0 to n-2 rk+1(t)Pk+1(A)

+k=0 to n-1 and we can write it here lambda I-A, lambda k+1I-A rk+1t*Pk, is it okay. So we can

write it like this. This we can write it k=n-2 rk+1(t) Pk+1(A). Now if you observe here that this

rk+1(t) is just a scalar quantity. I can take it out. So rk+1(t) I am writing here, k=0 to n-1 and this

is what lambda k+1I-A*Pk(A).



Now my claim is that this is nothing, but –Pk+1(A). So how we can look at. If you look at the

expression  for  this  Pk,  now what  is  the  value  of  Pk+1,  so  Pk+1(A)  is  basically  A-lambda

k+1I*Pk(A), right, but here we have lambda k+1I-A*Pk(A), so that I am writing as –Pk+1, so

that I am writing as –Pk+1(A). So you are writing this as –Pk+1(A), then I can write this as

summation.
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So it is basically F dash (t)-AF(t)=summation k=0 to n-2 and what is here rk+1tPk+1(A). So here

rk+1t rk+1tPk+1(A)-summation k=0 to n-1 and what is here it is rk+1t, so rk+1t and Pk+1(A),

right. So if you look at everything will be canceled out, only this last term will be left that is

corresponding to k=n-1, because both are same up to n-2 here. So what is left here is –rn(t) and

Pn(A), is it right here. It is t. Now what is Pn(A).

So Pn(A), this is Pn(A) and we have already calculated Pn(A) as 0. So it means that this is

nothing but 0. So it means that F dash(t)-AF(t)=0 and we already know that F(0)=identity. So

what we have shown here that F(t)  satisfy this  initial  value problem, but e to power A(t)  is

already satisfying this equation and we have done. So that is we wanted to prove here. So here

from this onward we have.
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And there is an alternative way to handle this situation. The alternative way is that you might

separate lambda and F(t) and then we simplify this, that I am not going to do it.
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But we just simply reaching up to this point that F(t) satisfy the differential  equation F dash

(t)=AF(t) and F(0)=I and we already know that e to power A(t) is satisfying this and by existent

and uniqueness theorem, we simply say that F(t)=e to power A(t) for all time t. So that is the

proof. So e to power A(t) can be written as the expression, which we have already wanted to

prove is this, that e to power A(t)=summation k=0 to n-1 rk+1t*Pk(A).



Where rk(t) is defined in a recursive manner using the relation given in 2. So this proves the

theorem 2 and we can use this result to find e to power A(t) for a given matrix.
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You may wonder that why we have discussed several methods to find out e to power A(t), then

why this  method is given to us. In fact,  because of its  nature,  you can find out a computer

program to calculate e to power A(t) in a very easy manner. So this algorithm, this may be treated

as algorithm to calculate e to power A(t) using your computer also. So it  may be a little bit

difficult when you use this algorithm to solve your e to power, to find out e to power A(t) using

your pen and pencil.

But it is quite useful when you write this as an algorithm. Anyway so now example 2 is that

express e to power A(t) as a linear combination of I and A when A is a 2x2 matrix with both of its

Eigenvalue is equal to lambda. So here the condition is that both of the Eigenvalues is equal to

lambda, then how we can find out e to power A(t). So first things since it means what is given

here that lambda 1=lambda 2=lambda.

And the scalar equations are given as r1 dash=lambda r1(t) and r1(0)=0 and r2 dash(t)=lambda

r2(t)+r1(t) r2(0)=0. We can easily solve this equation r1 dash(t) is nothing but r1(t)=lambda (t).

So basically this is some constant time e to power lambda (t) and that constant will be fixed by



this initial condition that is r1(0)=1. So r1(t)=e to power lambda (t). Now to find out r2 dash (t),

we have r2 dash(t)-lambda r2(t)=e to power lambda (t).

We can simply say that if you multiply by e to power –lambda t throughout, then I can write this

as d/dt of r2(t) e to power –lambda t=1 and then if you integrate, then r2 e to power –lambda t=t

+ some constant thing and you can fix your constant by condition r2(0)=0, so it is 0=0+C. So C

is coming out to be 0. So r2 e to power –lambda t=0 or we can say that r2(t) is given as te to

power lambda t. I am using one method. You can use any of the method which you know.

So here r1(t) and r2(t) is known to us. P0(A) is given as I and P1(A) is nothing but A-lambda I.

So now e to power A(t) is written as this r1P0(A) that is e to power lambda t*P0. So let me write

it here. It is basically r1P0+r2P1 and so on. So r1 is e to power lambda t P0 is I+r2 is te to power

lambda t and P1 is A-lambda I and we can write down the expression for e to power A(t) as e to

power lambda t. This 1-lambda t*I+te to power lambda t*A.

So this is true for any matrix whose size is 2x2 and all the Eigenvalue is equal to lambda. Is it

okay. So now, so we have calculated e to power A(t) in this case when A is 2x2 matrix and both

the Eigenvalues are same and it is equal to some value, let us say lambda. Now let us consider 1

more example. Here also we need to find out e to power A(t). Again the matrix is of size 2x2, but

the Eigenvalues are distinct, that is lambda is not equal to.

So in this case, let us first solve the system of linear differential equation r1 dash t=lambda r1(t)

and r1(0)=1 and r2 dash (t)=mu r2(t)+r1(t) where r2(0)=0. So as we have pointed out the r1(t) is

nothing but e to power lambda t and if you want to solve the second equation, then it is what r2

dash(t)-mu r2(t)=e to power lambda t. So here if you multiply by e to power –mu (t), then what

you will get. Here we can get d/dt(r2t)*e to power –mu(t)=e to power lambda-mu and t.

(Refer Slide Time: 35:34)



So this  we can  write  it  r2(t)  e  to  power  –mu(t)=e  to  power  lambda-mu t/lambda-mu+some

constant. Now r2(0) is 0, so this is 0 and this is 1/lambda-mu+C, so constant is given as the

minus of lambda-mu. So constant is this lambda-mu and you can put it here, then you will get

this as. So let me write it here r2(t) is basically multiply e to power mu(t). So here we have e to

power lambda t/lambda-mu+e to power mu(t)/mu-lambda.

So when you simplify, you will get this, that e to power lambda t-e to power mu(t)/lambda-mu.

So here we can get r2(t). So now P0(A) is as it is, it is I and P1(A) is A-lambda I, then you can

write e to power A(t) as e to power lambda tI + this r2(t) that is e to power lambda t-e to power

mu(t)  upon lambda  –P*P1(A)  that  is  A-lambda  I  and  when  you simplify, you will  get  this

expression.

So this expression will give you the expression for e to power A(t) for 2x2 matrix where both the

Eigenvalues  are  unequal  or  not  equal.  So  with  this,  I  stop  here.  Discussion  of  finding  the

fundamental matrix e to power A(t) for the autonomous case and next lecture we will try to focus

on non-autonomous case and try to see whether this similar kind of expression is available in the

case of non-autonomous system or not.

So with this that is all and will continue in next lecture. Thank you very much for listening.

Thank you.


