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Hello friends. Welcome to lecture series on Matrix Analysis with Applications. So, in the

last few lectures we have seen that what vector spaces subspaces are, and what are their

basic properties. We have also seen, we have also studied a basis and dimension of vector

spaces and subspaces. Now this lecture basically deals with linear transformation, what

linear transformation is and how we can find out a linear transformation from V to W.

(Refer Slide Time: 00:58)

So, let us see now what linear transformation is you see let V and W be 2 vector spaces

over  the field  F. A linear  transformation  which is  also  say LT. From V into W is  a

function, from V into W such that T of alpha u plus v is equal to alpha T u plus T v for

every u v in v and for all scalars alpha in v.
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So,  basically  what  linear  transformation  is  basically,  you  see  that  T  is  a  linear

transformation from a vector space v to vector space W over the field F. If for every v 1 v

2 in V, and for every alpha in field T of alpha v 1 plus v 2 is equals to alpha times T of v

1 plus v 2. Now this alpha v 1 is nothing but a scalar multiplication of a alpha with a

element of a vector space.

So, I am not putting dot here its understood that it is alpha dot v 1 ok. Similarly, this is

this T v 1 is a element of W you see we have a we have vector space V we have vector

space W and we define a linear transformation T from V to W if we have any element

say V here the image of this element in W is simply T V ok. So, this T V is nothing but a

element of a vector space W this vector space W and this T v 2 is also element of vector

space W.

So, this alpha into T of v 1 means a scalar multiplication of a alpha with element of W

ok. So, I am not putting dot here its understood this is nothing but alpha dot T of V fine.

So, basically if these property hold for every v 1 v 2 in V and for every scalar alpha in

field that we say that T is a linear transformation. Now this property can also be stated as

we can also say that T of v 1 plus v 2 is equals to T of v 1 plus T of v 2 first property, and

second property is T of alpha v 1 is equals to alpha of T of v 1 for all v 1 v 2 in V and

alpha belongs to field ok. So, we club these 2 property here in this step ok.



So, we can also state this single property as these 2 properties. So, if a if a function T

from V to W satisfy these 2 property then we say that T is a linear map or a linear

transformation.  Now, let  us  discuss  few  examples  of  linear  transformation  the  first

example is we have considered T.

(Refer Slide Time: 04:16)

From vector space R 2 to a vector space R 2 which is defined by T of x 1 x 2 as x 1 plus

x 2 to x 1 minus x 2.
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So, let us see, we defined T from R 2 to R 2 as T of x 1 x 2 is equal to x 1 plus x 2, and it

is it is 2 x 1 minus x 2. Now suppose you want to show that this is a linear map or linear

transformation from R 2 to R 2. So, how can we proceed for this, so let us consider v 1 v

2 as  2 elements  in R 2 2 element  of this  vector  space R 2? So,  this  implies  v 1 is

something say x 1 x 2 and x 2 is something y 1 y 2 and now we have to show that if it is

a linear map. So, we have to show that T of alpha v 1 plus v 2 is equals to alpha times T

v 1 plus T v 2 this we have to prove.

If it is a linear map, so how can you proceed for this let us find the T alpha v 1 plus v 2

first it is alpha times x 1 x 2 plus y 1 y 2. So, it is alpha x 1 plus y 1 and it is alpha x 2

plus y 2 ok. So, T of alpha v 1 plus v 2 will be equals to T of this element; that means, it

is defined by this definition. So, it is simply T alpha x 1 plus y 1 plus alpha x 2 plus y 2

which is sum of these two element in the first component and 2 times of a component

minus second component as a second element. So, it is it is 2 times 2 times x 1 which is

alpha x 1 plus y 1 minus x 2 is alpha x 2 plus y 2.

Now, this can be written as alpha x alpha times x 1 plus x 2 ok, plus y 1 plus y 2 comma

it is alpha times 2 x 1 minus x 2 plus 2 y 1 minus y 2 ok. Now this can be written as

alpha times x 1 plus x 2 comma alpha 2 x 1 minus x 2 comma y 1 plus y 2 plus comma it

is, it is 2 2 y 1 minus y 2 ok. Addition of these two if you add this with this you get the

first  component if  you add this  with this  we get the second component.  Now this is

nothing but you can easily verify this is alpha times T of x 1 x 2, T of x 1 x 2 will be

nothing but  x  1 plus  x 2  as  a  first  component  and 2  x 1  minus  x 2  in  the  second

component, and alpha time this will give the first component plus and this is T of y 1 y 2.

So, that is nothing but alpha times T v 1 plus T of v 2. So, we have shown that this

property holds for every v 1 v 2 and alpha belongs to field; that means, this map is a

linear transformation ok. Now similarly we can easily show that T from R 2 to R 2 which

is given by this expression which is also called projection on the a axis is also a linear

map it follow the same lines as we did earlier in the first example. So, now, the third one

is we consider T from the set of all polynomials degree less than equal to n over the field

R, to all polynomials of degree less than equals to n minus 1 over R time by T of f x is

equal to f dash x. Now this T is also called differential operator ok, where f dash T know

the derivative of f x now this is also all linear map.
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How it is a linear map you can simply see here, we have defined T of f x as f dash x

where f dash x is nothing but derivative of f x now you take any f and g in P n x P n R

ok, and alpha belongs to field here is R you take alpha f plus g T of this. So, T of this will

be nothing but alpha f plus g whole derivative by this definition and this is nothing but

alpha of f dash plus g dash and this is alpha times T of f plus T of g.

So, we have shown that the property of linear transformation hold for every f and g in

vector space P n over the field R; that means, this will be a linear transformation. Now,

similarly if we define a integral of a to b of a function f x where f x is a continuous

function from a to b then this is also a linear map ok.
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So, this is very easy to show again because if you take a if you take T of f x as all a to b f

x d x, I mean T of f I think T of f. It is T of f if you take T of f defined as this, now you

take any f and g in set of continuous function in the interval closed interval a to b and

any alpha in field.

And you take alpha f plus g the T of this that will be equals to integral a to b alpha f plus

g x in to d x, which is equal to integral a to b alpha f x plus g x whole d x and which is

equal to alpha times integral a to b f x d x plus integral a to b g x d x and this is equal to

alpha times T of f plus T of g. So, we have shown that this property hold for every f and

g in the set of continuous function the closed interval a to b and alpha belongs to field

this means this map is a linear map.



(Refer Slide Time: 11:46)

Now, similarly if we see the last example you see we have considered a be a matrix we

have fix matrix of order m cross n. And we define T as R n cross 1 means it is a it is a

column vector basically, to a column vector of m dimensional space such that T x equal

to a x. Now again this, a is fixed if you take any x and y in R n cross 1 and take c x plus

y. So, it is easy to show that it is nothing but alpha times T x plus T y, so it will be a

linear map.

Now, let us see some basic properties of linear transformation, the first property is if we

consider a linear map from V to W, V and W are the vector space over the field F then

the first property is T of 0 of v 0 of v means v means additive identity of V, always map

to additive identity of W ok.
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Now it is very easy to show we are considering here T from vector space V to W. What I

want to show if we have a additive identity here which we which we denote as g 0 of v, 0

v means additive identity of vector space v always map to additive identity of vector

space w by this linear transformation T. So, it is very easy to show you see that for a

linear map alpha v plus say p is equals to alpha times T v plus T p. And this is true for all

v and p belongs to v and for all alpha belongs to field, since it is a linear transformation.

Now you first in this in order to we have to show that T of 0 v is equals to 0 w this we

have to show.

So, you first put p equal to 0 since it is true for every alpha belongs to field and p and v

belongs to v. So, it will be true for p equal to 0 also 0 means 0 of course, v ok. So, this

means it is 0 of alpha v is equals to alpha times T v plus T of 0 v, because additive

identity plus an element of vector space is itself that is why we are having here alpha v.

Now in order to show that now you take say alpha equal to say you take v equal to 0 ok,

you take alpha equal to 1 and v equal to 0 since it is true for every alpha and every v. So,

it will be true for true for alpha equal to 1 and v equal to 0 also. So now, we will obtain 1

dot v is always v. So, it is v I mean v is 0 here 0 of v which is equals to 1 dot T of v will

be T of v and v is 0, so it is T of 0 v plus T of 0 v.

So, let T of 0 v is basically let us suppose it is w. So, we are obtaining w equal to w plus

w now w is a element of capital W it is a vector space, now if it is a vector space. So, its



additive inverse will exist, so you can always add with additive inverse of w both the

sides element which is inversely identity element.

So, it is 0 of w is equal to w plus 0 of w, so this implies w equal to 0 of w and this

implies w is nothing but w is nothing but you see T of 0 of v. So, this T of 0 of v is equals

to T of 0 of w, so this is a first most property that if it is a linear map. So, T of 0 will

always may map to 0 of w additive identity of w, the second property is T of minus v

minus v is additive inverse of v always map to or always equal to negative of T v; that

means, additive identity of T of v. So, again it is easy to show you see we have to show

that T of minus v is equal to minus of T v for every v in v ok.

(Refer Slide Time: 15:43)

Now, we know that if it is a linear transformation then T of alpha v plus p will be equals

to T alpha v plus T p for all v p belongs to vector space V and for all alpha belongs to

field, this we already know now you put p equal to 0 first since it is true for every p. So,

it will be true for p equal to 0 also 0 means 0 of v ok. So, it will be T of alpha v the left

hand side will be equals to alpha times T of v plus T of 0 v; now T of 0 of v is equal to 0

of w. So, it is alpha times T v plus 0 of w which is equals to alpha times T v. Now you

substitute put alpha equal to minus 1, if you put alpha equal to minus 1 we have already

shown you the vector spaces that minus 1 dot v is nothing but minus v.

So, it is T of minus v and it is minus 1 dot element of vector space W will be minus times

that element that is minus of T v. So, we have shown this property also the last property



is T of alpha 1 x 1 plus alpha 2 x 2 and so on up to alpha n x n is equals to alpha times

sum of alpha alpha i s T of x i s, where x i s are the element in vector space and alpha is

element is field again it is easy to show the result is very trivial.

(Refer Slide Time: 17:27)

You see T times alpha 1 x 1 plus alpha 2 x 2 and so on alpha n x n if you take this now

you take this element as suppose capital X. So, we know the property of vector space, so

by the property of vector space this will be equals to alpha 1 times T x 1 plus T capital X 

Now, it is alpha 1 x 1 plus alpha 1 T x 1 plus T of alpha 2 x 2 and so on alpha n x n,

again you take this as say capital Y again you apply the property of vector space I mean

linear transformation. So, this will be alpha 2 T of x 2 plus T of Y. So, similarly if you

extend this up to n times, so we will get the same result bit we are having here.
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Now, the next theorem is let V be a finite dimensional vector space over the field F and

let v 1 v 2 up to v n, v n ordered basis for V ok. Let W be a vector space over the same

field F and let w 1 w 2 up to w n be any vectors in capital W. Then there is a unique

linear transformation T from V to W such that T of v i equal to w i for i equal to 1 to n

ok, that now what I want to say basically in this theorem that you are having a linear

transformation T from V to W ok.
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Here you are having from vector say v 1 v 2 v n which is in ordered basis of capital V ok.

So, they will always they will exists a unique linear transformation T this T such that

such that T of v i will map to w i w 1 w 2 up to w i ok, this is the main result that they

will exist a unique linear transformation T from V to W such that this happens.

Now, proof is very easy you see here you take any let v belongs to v ok, if any v belongs

to this space and this we already know that v 1 v 2 up to v n is a basis is a ordered basis

for v ok. If it is a basis this means any element v in this vector space can be written as

linear combination of element of the basis because, it is it is a basis; that means this span

of this will generate the entire vector space V.

So,  if  you  take  any  element  V  in  this  vector  space  that  can  be  written  as  linear

combination of elements of v i s ok. So, this implies there will exist unique alpha 1 alpha

2 up to alpha n in field such that T of we will be alpha I mean sorry, T V will be equals to

alpha 1 v 1 plus alpha 2 v 2 and so on up to alpha n v n ok. Now for this v for this v, we

can define T of v as alpha 1 T of v 1 as w 1 T of v 2 as w 2 and so on. Now this T is well

defined and it is cleared T of v i is w i, now we have to show that it is this map is linear

and number 2 this is unique.

So, for linear how we can show linear you can take say v and p are 2 elements in w, I

mean in v you take any alpha belongs to field and we have to show that alpha T of alpha

T plus p is equal to alpha T v plus T w i mean T v. So, how can we show this, so we have

to prove this thing T of alpha v plus p is equals to alpha times T v plus T v. So, this to

prove now let p since p is also some element in vector space v.

So, this p can be written as some linear combination of element of v i s. So, this will be

beta 1 v 1 plus beta 2 v 2 and so on up to beta n v n, and this implies T of p will be beta 1

T of v 1 is w 1. So, it is w 1 plus and so on up to beta n w n. Now you take alpha v plus p

because we have to show this result for l for T as a linear map.

Now, alpha p plus v will be what it is alpha alpha 1 plus alpha alpha 1 plus beta 1 times v

1 this is p this is v plus alpha alpha 2 plus beta 2 times v 2 and so on. alpha alpha n plus

beta n times v n and what is T of alpha v plus p this will be T of this this will be T of T of

alpha alpha 1 plus beta 1 ok, v 1 plus alpha alpha 2 plus b 2 times v 2 alpha alpha n plus

beta n times b n.



Now this is equals to it is alpha it is you see it is alpha alpha 1 plus beta 1 times T of v 1

which is w 1 plus alpha alpha 2 plus beta 2 times T of v 2 which is w 2 and so on alpha

alpha n plus beta n times T of v 1 which is w n. So, it is alpha alpha 1 alpha times alpha 1

w 1 and so on up to alpha n w n and plus b beta 1 w 1 and so on up to beta n w n which

is equals to alpha times T of v plus T of p from here and from here.

So, we have shown that T T of alpha p plus alpha v plus p is equals to this this means this

is a linear map then next thing to show that it is this linear map is unique. So, so in order

to show that this linear map is unique you consider a linear map u such that T of v i s w i

for all i. Then if you write u of v from here you see if you take any v in again in v, then

that v can be uniquely expressed as alpha 1 v 1 plus alpha 2 v 2 and so on up to alpha n v

n. So, what will be u of v then u of v will be by this expression that will be u of alpha 1 v

1 and.

So, on up to alpha n v n and this will be alpha 1 u of v 1 and so on up to alpha n u of v n

and this will be alpha 1 w 1 and. So, on up to alpha n w n ok; that means, it is equals to T

of  v  again  from  here  so;  that  means,  since  the  expressions  are  same;  that  means,

transformation  is  unique  So,  we  have  shown  that  this  is  a  linear  map  and  a

transformation is unique hence we have proved the theorem ok.
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Now, the next is determine whether there exists a linear transformation in the following

cases and if exist find the general formula. So, let us start with a first problem if we are



having say T from R 2 to R 2 which is defined as this expression then can then can be

find, a linear transformation such that these property hold how can we see. So, let us see

let us start with a first problem.

(Refer Slide Time: 26:20)

So, here it is T of R 2 to R 2 and here T of T of 1 2 is 3 0, and T of 2 1 is 1 2 first of all

first of all we have seen that these two elements are in R 2.

First of all let us see first of all observe that is are they linearly independent. So, answer

is yes we can’t write 1 2 as a liner combination of 2 1 ok. So, yes they are linearly

dependent now what will be what will be the dimension of R 2 dimension of R 2 will be

2 and if there exist any 2 linearly independent vector in R 2. So, that will be the basis of

R 2, I mean that will be that the span of those two elements will generate the entire

vector space ok.

Now, these elements 1 2 and 2 1 in R 2, so the span of these 2 elements a span of these 2

elements will be definitely R 2, because they are linearly independent thus what is a what

is the dimension of R n, dimension of R n is n ok. And if you are having any n dimension

any set containing n linearly independent vectors for that will be the dimension that will

be the basis of R n there are infinite basis of R n, they have infinite basis of R 2 1 of the

basis is this you take any 2 linearly independent vectors in R 2 the span of this will be

definitely generate R 2 this is 1 of the basis ok.



Now is there exist any linear transformation such that this equal to this and this is equal

to this. So, and if yes how can you find that, so you see you take any x y in R 2, any x y

here now since this span of this generates entire R 2 so; that means, there will exist some

scalars alpha and beta such that such that this x y can be written as linear combination of

these 2 vectors ok.

So, this implies x is equals to alpha plus 2 beta and y is equals to 2 alpha plus beta. So, it

is alpha plus 2 beta is equal to x and 2 alpha plus beta is equals to y. Now you multiply

this  by 2 and subtract  these 2 equations  what  we will  obtain  this  is  minus 3 alpha.

Multiply by 2 and subtract with this of first equation and this equals to x minus 2 y and

that implies that implies alpha is equals to 2 2 y minus x by 3. Now what will be beta

beta will be nothing but y minus 2 alpha. So, beta will be y minus alpha is 2 by 3 times 2

y minus x.

So, it is 3 y minus 4 y that is minus y plus 2 x upon 3, now this x y is alpha times the first

element the first vector in beta time the second vector. What is alpha? Alpha is 2 y minus

x upon 3 times 1 2 and plus 2 x minus y upon 3 times 2 comma 1 now what is T of x

comma y since T is linear. So, it is 2 y minus x upon 3 times T of this because it is a it is

some scalar plus 2 x minus y upon 3 times T of 2 1. So, this is equals to 2 y minus x

upon 3 times what is T of 1 2 it is given here 3 0 and plus 2 x minus y upon 3 times T of

2 1 is given as 1 2, now you can simplify this and we can easily find out what is T of x y

ok. So, in this way we can find out a linear transformation T from R 2 to R.

Now, if you see the second example ok, here what here 3 elements are given to you that

is T of 0 1 is 3 4 T of 3 1 is 2 2 and T of 3 2 is 5 7 of course, 0 1 3 1 and 3 2 are not

linearly independent, because the dimension of R 2 is only 2 and here we are having 3

vectors. So, you take any 2 any 2 linearly independent I mean any 2 arrive vectors says 0

1 and 3 1. Find out a linear transformation as we did in the example first here and if that

linear  transformation  satisfy  the  third  expression  also  then  there  exist  such  linear

transformation otherwise, otherwise we say that that linear transformation does not exist.

So, if you have a conditions here in the first example we are having two conditions only

and the vectors are linearly independent here we are having we are having 3 vectors ok.

So, basically if you have to see that if you have to see that such linear transformation

exist then you can write 3 2 or 3 1 anyone vector as a linear combination or remaining 2



and try to see that weather whether the expressions are also same or not. Images are also

same or not if they are not; that means, that linear transformation does not exist. Now for

the third example you see it is defined from P 2 to P 2 P 2 is a polynomial degree less

than equal to 2.

So, what is the dimension of P 2 dimension of P 2 will be 3. So, for a unique to in order

to find the unique L T unique linear transformation from P 2 to P 2 we must have at least

three independent conditions, but here the conditions are only to. So, this means there

exist  infinitely  many  linear  transformation  there  exist  infinitely  many  linear

transformation from P 2 to P 2 here. And if you are interested to find out 1 such a linear

transformation then you take a vector independent of this and this take any image of this

and that then you can find out say for example.

(Refer Slide Time: 33:26)

Here what is given to us given to you T is from P 2 to P 2 ok, now T of 1 plus x as x plus

2 and T of x square is 4 x only two conditions are given to you.

So, there will be infinitely many linear transformations from P 2 to P 2 satisfying these 2

equations, suppose we are interested to find out 1 such linear transformation. So, how

can we proceed you let you take T of say T of say x as say x square this is this will make

these vectors these linearly independent. These 3 vectors are linearly independent you

can  easily  verify  that  these  3  vectors  are  linearly  independent.  Now  you  take  any

polynomial of P 2 say a plus b x plus c x square that can be written as alpha times 1 plus



x plus beta  times x square plus  gamma times  x square,  because these 3 vectors  are

linearly independent and how many vector these are 3 and the and the dimension of P 2

is 3.

So, this will form a basis of P 2, so any vector in P 2 can be written as linear combination

of element of the basis. Now this implies this if you take here the constant here is alpha.

So, a is equal to alpha the coefficient of x is alpha plus gamma and that is equal to b the

coefficient x square is beta which is c, now this implies gamma is equals to b minus a

because alpha is a. So, we can say that a plus b x plus c x square will be alpha times

alpha is a 1 plus x plus beta is c x square and gamma is b minus a times x.

Now, you take T of a plus b x plus c x square that will be equals to a times T of 1 plus x c

times T of x square plus b minus a times T of x. And that will be equal to a time T over 1

plus x is x plus 2 plus c T of x square is 4 x plus b minus a T of x is x square. So, that

will be equal to basically b minus a times x square plus 4 c plus a times x plus 2 a. So,

this is a our required linear transformation 1 such linear transformation.

So, there are infinite ways to consider the third expression. So, there are infinite linear

transformation of such type, but one such linear transformation is this. So, in this way we

have seen that what linear transformation is and what are the basic properties of linear

transformation now there may be some examples say.
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Say you consider T from R 2 to R 2 as T of say x y as 1 plus x comma y, now it is not a

linear transformation we can easily verify this you see if you take T of 1 0 it is simply it

is simply 2 comma 0. If you take T of 0 1 it is again 1 and 1 if you take T of sum of these

2 that is 1 and 1 sum of these 2 is 1 and 1 that must be equal to sum of these 2 by the

property of linear transformation, but by the definition it is coming 2 comma 1 which is

not  equal  to  sum of  these  2.  So,  that  means  it  is  not  a  linear  transformation.  Now

similarly if you defined say T from R 2 to R 2 as T of x y is equal to say x square comma

y. It is also not a linear transformation. It is very easy to show you simply give a counter

example for this, ok.

So, in this lecture we have seen that what linear transformations are and what are the

basic  properties  of  linear  transformation.  In  the  next  lecture  we will  see  some more

properties of linear transformation.

Thank you.


