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Hello  friends.  So,  welcome  to  the  last  lecture  of  this  course  which  is  on  Polar

Decomposition.  So,  again  it  is  a  decomposition  of  a  matrix  in  terms  of  product  of

different  matrices  like  in  case  of  singular  value  decomposition  and  this  particular

decomposition  is  having  various  applications  in  different  fields  of  science  and

engineering.  Hence, it  is a good way to close this course after introducing you polar

decomposition. 
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So, what is polar decomposition? From the basic knowledge of complex number you

know that if I am having a complex number Z which is having real part as x and then iota

times y, y is the imaginary part of this number. Then this number I can also write r into e

raised to power i theta, where r is a positive quantity which is square root of x square

plus y square and theta is tan inverse y upon x. 

So, what I am having I am having a complex number and I am writing this number as the

product of these 2 thing r and e raised to power i theta, where r is positive and e raised to

power I theta is some sort of rotation type of thing with. So, can we have the same type



of thing in case of matrices, means can I write a matrix A as the product of 2 different

matrices let us say P and W, where W is some sort of rotation matrix and P is having

some sort of positive definiteness or positive semi definiteness type of property. So, this

is the idea of polar decomposition.
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So, what I want to say that we are having a polar decomposition for any matrix a having

real entries. Let us say here it is also valid for complex matrix is also of size m by n

using the same analogy as we are having in case in case of complex numbers that in case

of complex number r is greater than equals to 0 means I should have a positive operators

and  e  raised  to  power  i  theta  is  something  similar  to  isometries  or  transformations

rotational transformations. So, let us learn this.
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So,  let  us  learn  a  theorem before  going  to  this  and  this  theorem is  called  as  polar

decomposition theorem. So, the statement is something like that let us first restrict up to

square matrix then we will discuss the case of rectangular matrix. So, for any square

matrix A there exist a unitary matrix W and a positive semi definite matrix, in short let

me write it PSD, P such that a can be written as the product of W and P. Furthermore, if

A is invertible then the representation or decomposition is unique. Means you can write

this unique way as the product of 2 matrices one is positive semi definite and one is

unitary. 

So, let us see the proof of this. From singular value decomposition of A, we have A

equals  to USV star, where U and V are unitary matrices  and S is  a diagonal  matrix

having singular values at the diagonal, at the diagonal entries. This I can write as U into

V star into V because V is a unitary matrix V star V will be identity matrix S into V star.

Now, write this U into V star is W and VSV star is P. So, what I am having? W equals to

U V star and P equals to VSV star.

Now, since U and V star are unitary matrices therefore, their product W is also unitary.

So, we have seen we have saw that the W is unitary what I need to show. Now, that P is a

positive semi definite matrix. So, here if you see P equals to VSV star it means P and S

are unitary equivalent or in other word I can said they are unitarily similar, they are

similar  matrices.  So,  it  means  the  spectrum  of  P  equals  to  spectrum  of  S.  Means



eigenvalues  of  P is  also the eigenvalues  of  S or  vice  versa.  Now, if  you see S,  the

eigenvalues of S are the singular values of A, and what is that singular values are always

non-negative. This implies eigenvalues of P are non-negative and if the eigenvalue of

matrix are non-negative it means the matrix is a positive semi definite matrix. 
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So, in this way we have prove the first part of the theorem that I can write a as the

product of the W and P, where W is unitary and P is positive semi definite matrix.

Now, let  us  do  the  second  that  if  a  invertible  then  this  decomposition  is  a  unique

decomposition. Now, let the representation is not unique that is a equals to WP equals to

ZQ, where P and Q are positive semi definite matrices and W and Z are unitary matrices.

So, what I need to show now, that W equals to Z and P equals to Q then only I can say

that representation is a unique representation. Now, here what I am having WP equals to

ZQ. So, if I multiply both side by Z star that is complex conjugate of conjugate transpose

of Z then what I will be having? Z star into W equals to Q into P inverse, I can write. 

Here you just note that, A is an invertible matrix, A is invertible. And what I am having?

It  means P and Q are also invertible  because A is the product of W and P. So, A is

invertible  means the both the matrices  is  should be invertible  W is unitary. So,  it  is

invertible. So, there P should also be invertible similarly we can say that Q is also be

invertible. So, that is why I am saying these means we have put this condition that if A is

invertible then only representation is unique. 



Now, what I can have? If you see that Z star is unitary matrix, W is also a unitary matrix,

it means their product is unitary. So, from here I can say Q into P inverse is also unitary

matrix,  it  means  QP inverse  conjugate  transpose  into  QP  inverse  means  conjugate

transpose of a unitary matrix product itself should be I it means P inverse, if I see this Q

square into P inverse equals to I, it means P square equals to Q square. 

Now, if you see here P and Q are positive semi definite matrices not even semi definite

they are positive definite matrices in this case because A is invertible. So, what I will be

having? If P and Q are positive definite matrices then P square equals to Q square implies

that P equals to Q. If P equals to Q and P and Q are invertible this implies W also equals

to Z, it  means the factorization is unique.  So, this  is the proof of second part  of the

theorem such kind of factorization of a matrix, that if you can write a matrix if we are

writing a matrix as the product of 1 unitary matrix and 1 positive semi definite matrix

such kind of factorization is called polar decomposition of a given matrix. So, let us take

an example of this. 
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So, find the polar decomposition of A equals to 11 minus 5 minus 2 and 10. So, it means

I need to write matrix A as the product of 2 matrices 1 is unitary and another one is

positive semi definite. 

So,  let  us  first  perform  the  singular  value  decomposition.  So,  if  I  calculate  the

eigenvalues of A star A these comes out to be 250. So, hence singular values of a the



bigger singular value is square root of 200, that is 10 root 2 and square root of fifty

means  this  is  the  second singular  value,  so this  is  5  root  2.  Now, if  I  calculate  the

eigenvector of A star A corresponding to eigenvalue 2 hundred what I will find that this

eigenvector comes out to be 1 by root 2. So, orthonormal eigenvector, I am writing 1 and

minus 1. 

Similarly, another eigenvector means eigenvector of a star a corresponding to eigenvalue

50 comes out to be 1 by root 2, 1 1. So, from here I can write the matrix V equals to 1 by

root 2, minus 1 by root 2 and then 1 by root 2 and 1 by root 2. So, if the singular value

decomposition of A USV star, then here S is sigma 1 that is 10 root 2, 0, 0, 5 root 2.

So, now, what I need to calculate? For completing the singular value decomposition of A,

I need to calculate A matrix U. So, my U 1 will become A into V 1 upon sigma 1 and this

comes out to be 1 by 5, 4 and minus 3. Similarly U 2 will become A V 2 upon sigma 2 if

you can remember it from the singular value decomposition lecture it will be 1 upon 5 3

and 4. So, hence my U becomes 4 upon 5, minus 3 upon 5, 3 upon 5, and 4 upon 5. 

Now, I want to perform polar decomposition of A. So, if polar decomposition of A is

equal to W into P. Then what in my W according to singular value decomposition these

W is U into V star. So, U into V star means U into V conjugate transpose, U is gained by

this V star will become transpose of this matrix and this comes out to be 1 upon 5 root 2

into 7 minus 1, 1 and 7; so here W. Hence P will become V into S into V star and this

becomes 5 upon root 2 3 minus 1 1 3 and if you multiply W and P. You will get the

matrix A, that is the polar this is these are the matrices for the polar decomposition of the

matrix A.

So, what we are using? Basically, we are using the singular value decomposition for

performing the polar decomposition and as I told you this is the case of square matrices

and this  is  one  of  the  way of  doing polar  decomposition.  Let  us  talk  about  general

matrices means rectangular matrices.
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So, there are 2 types of polar decomposition in case of rectangular matrices, the right

polar decomposition and the left polar decomposition.

The right polar decomposition of a matrix A which is m by n matrix, where m is greater

than equals to n means you are having more number of rows than columns hence the

form A equals to U into P, where U is a matrix with orthogonal columns. So, here U is

not a square matrix in case of the which we have discussed just earlier, where A is a

square matrix both U and P will be square, but if A is a rectangular, A is of size m by n

then U will be of size m by n and P will be size of n by n. So, here U is m by n matrix

with orthogonal columns means if you take the dot product of each column it will be 0

and P will be a n by n positive semi definite matrix.

In the same way we can define left  polar  decomposition  in case when the matrix  is

having more number of columns when compared to row. So, if A is a n by n matrix

where m is greater than equals to n means you are having more number of columns, then

we will be having left polar decomposition and it is H into U, where H is a positive semi

definite matrix of size n by n and U is a unitary or orthogonal means U is a matrix having

orthogonal columns.
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Now, how to perform the polar decomposition of these matrices? So, another way of

doing it let me explain to you.
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So, how to find P in right polar decomposition? So, what I am having here? I am having

a matrix A which is of size m by n and m is greater than n. So, take the matrix A star into

a means conjugate product of conjugate transpose of A together with A. Then certainly

this matrix will be a diagonalizable matrix and let us write the diagonalization of this

matrix  as  SBS  star  because  it  will  be  a  symmetric  matrix.  So,  it  will  be  always



diagonalizable. Here B will be a positive semi definite matrix means it will be a diagonal

matrix  where all  entries are greater  than equals to 0, it  will not contain the negative

entries.

So, what I can write if this is the case I can write this B as C square, where C is square

root of B means and it is a diagonal matrix. So, it will be square root of each diagonal

entries into S star or this can be written as S C C into S star. So, these become S C S star

into S into C into S star because S star S star into S is an identity matrix in this case it

will be unitary matrices S is a unitary matrix.

So, from here take this as P this will again be P. So, star A will become P square. So,

from here I can write P equals to square root of the product of a conjugate transpose with

matrix A. How to find out it? You can find out by the diagonalization of A star A because

square root of A star A that is P will become raise to power half it will become S into B

raise to power half into S star. And here B is a diagonal matrix. So, B raised to power

half will be just the square root of each diagonal entry. So, in this way we can find out P

in the right polar decomposition. So, let us take an example of this. 
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Take A as, let us say take 3 1, 0 1 and 1 0, this 3 by 2 matrix. So, here a transpose will

become 3 1, 0 1 and 1 0. So, now, A transpose into A will be a 2 by 2 matrix, so this entry

will be 1. So, A transpose is 2 by 3. So, now, a transpose A will become 3 1 0, 1 1 0 into

3 1, 0 1, 1 0. 



So, here I will be having like 3 into 0. So, this entry will be 11 as I told you. The product

of this row with this column then product of this row with this column will become 3, 3

and then I will be having 2. Let me check one more time this entry will be 10, 3 into 3, 9

plus 1 into 1. So, it is the product of a transpose into A. 

Now, if  we see the eigenvalues  of  A transpose A the characteristic  polynomial  of  A

transpose A will become lambda minus 10 into lambda minus 2 minus 9. So, this will

become lambda square minus 12 lambda plus 11. So, from here what I will be having if

this equals to 0, this equals to 0 means what I am having lambda square minus 11 lambda

minus lambda plus 11 equals to 0. So, if I take lambda common lambda minus 11 minus

1 common lambda minus 11 equals to 0. So, eigenvalues of A transpose A become 11 and

1. 

Now, eigenvector  corresponding to  11 will  be  lambda equals  to  11 if  I  find out  the

eigenvector it will be A minus 11 I X equals to 0. So, this will give me minus 1 3 3 and

then 2 minus 11 will become minus 9 X 1, X 2 equals to 0 0. So, from here what I am

having? X 1 equals to 3 X 2. So, from here I got eigenvector as if I take X 2 as 1, X 1 X

2 as 1, so X 1 will become 3 transpose. And if I want to normalize it, so what I have to

do? 1 upon root 10 into means 3 upon root 10 and 1 upon root 10. This will be the

eigenvector corresponding to lambda equals to 11.

If I calculate it corresponding to lambda equals to 1 it will be 9 X 1 plus 3 X 2 equals to

0 and from second row 3 X 1 plus X 2 equals to 0. So, this gives me 3 X 1 equals to

minus X 2. So, from here what I having? The eigenvector is again 1 upon root 10 and if I

take X 1 as 1 X 2 will become minus 3 transpose.
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So, what I can write? I can write A transpose A the diagonalization of this matrix is S B

into S transpose, where S is given as, where S is given as 3 upon root 10, 1 upon root 10

that is the eigenvector corresponding to lambda equals to 11 and 1 upon root 10 minus 3

upon root 10 which is the eigenvector corresponding to lambda equals to 1. Then at

diagonal matrix B 11 0 0 1 into S transpose S transpose will become here 3 upon root 10,

1 upon root 10, then 1 upon root 10 which is similar to S. So, now, P will become a

square root of A transpose into A.

So,  this  will  become  S  into  B raised  to  power  half  into  S  star  or  here  I  am using

transpose, because real matrix is S transpose. So, it will be 3 upon root 10, 1 upon root

10, 1 upon root 10, minus 3 upon root 10 into B raised to power half. So, square root 11

0 0 the square root of 1 will become 1, into S transpose which is 3 upon root 10 1 upon

root 10 1 upon root 10 and minus 3 upon root 10. So, this is my matrix P.

Once I will be having my matrix P I am having A, A equals to W into P from here I by

making the product of these 3 matrices I will get my P. Then if P is available with me W

will become A into P inverse I can calculate my W and in this way I can perform the

polar decomposition of the given matrix A. This is the right polar decomposition we

cannot  make  left  polar  decomposition  in  this  case  because  if  I  take  in  left  polar

decomposition my matrix A will be written as some Q into Z where Q is the positive

semi definite matrix. And in that case this will become 3 by 3 matrix having 1 eigen



value 0 and hence the inverse of that positive semi definite matrix will not exist and you

cannot calculate the unity matrix like we have done in this case here.

So, this is the alternate way of doing this polar decomposition apart from the singular

value decomposition method which we have done in the earlier example. Again we are

having couple of example here.
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This is again how I have done in the earlier case. This is the matrix, this is A star into A

then M half  will  become A star into A square root and by using the same process I

calculate A equals to up, where U is P is given by this one and U is A into P inverse.
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So, another example is like this.
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This is again best on the singular value decomposition.  So, this is the singular value

decomposition of this matrix, then U is us into V star and P is V sigma V transpose. So,

by finding these 2 matrices I can perform the polar decomposition of a given matrix.
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These are the references for this lecture.

Thank you very much.


