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Lecture - 37
Krylov Subspace Iterative Methods

(CG and Preconditioning)

Hello friends. So, welcome to the 37th lecture of this course. As you remember in the last

lecture we have discussed about Krylov subspaces based iterative methods. In last lecture

in particular we have discussed about conjugate gradient method there we have seen the

algorithm of this method. Now, in this lecture let us start with an example of conjugate

gradient method. 
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Let us take a simple example solve the system 2 x 1 minus x 2 equals to 1 minus x 1 plus

2 x 2 equals to 0 using conjugate gradient method with initial solution x 0 as 0 0. So,

here if we see the coefficient matrix A is a 2 by 2 matrix 2, minus 1, minus 1 and 2 which

is symmetric as well as positive definite. So, it is a SPD matrix.

Now, the right hand side vector b is 1 and 0 and x 0 is given as 0 0. So, let us apply

conjugate gradient method for solving this system. So, if you remember the first step of

the algorithm of conjugate gradient method is to calculate residual initial residual that

will be r 0 and it is b minus AX 0. Since AX 0 is a 0 vector. So, the second term will be 0



and it is equals to b and b is given as 1 and 0. Also in the algorithm we assume it as the

initial such direction.

Now, in the second step what we will do? We will calculate alpha 0 that is the step length

which is r 0 T r 0 upon d 0 T A d 0 and here you can notice d 0 and r 0 are the same

vector. If I calculate it comes out to be 1 by 2, then in the third step since we are having d

0 as well as alpha 0 with us. So, I can calculate the next approximation of the solution

that is X 1 which is X 0 plus alpha 0 d 0. So, here X 0 is 0 0 plus alpha 0 is 1 by 2 and d

0 is 1 and 0,so it becomes 1 by 2 and 0.

Now, in 4th step what we will do we will calculate the residual in first iteration. So, r 1

here r 1 will become r 0 minus alpha 0 Ad 0 which is different from the steepest descent

method because in steepest descent method we used to take r 1 as b minus AX 1. So, if I

calculate it I am having r 0 alpha 0 d 0 as well as a with us. So, what I will be having 0

and half. Now, once you are having r 1 calculate beta 0 which is r 1 T into r 1 upon r 0 T

into r 0 and it comes out to be 1 by 4. So, here the new search direction d 1 is given as r 1

plus beta 0 d 0. So, r 1 is basically 0 and half plus beta 0 is 1 by 4 and d 0 is from the

first line 1 and 0. So, it comes out to be 1 by 4 as the first component and 1 by 8 sorry 1

by 2 as the second component.

Once we are having d 1 with me I can calculate alpha 1. So, again alpha 1 will become r

1 T r 1 upon d 1 T A d 1 and this quantity becomes 2 by 3. So, if I am having alpha 1 I

can calculate next step approximation of the solution that is X 2 it is X 1 plus alpha 1 d 1.

So, X 1 is with me here which is half and 0 plus alpha 1 is 2 by 3 and d 1 is 1 by 4 1 by

2. So, this becomes 2 by 3 and 1 by 3. 

Next I will calculate r 2. So, if you see here r 1 is r 0 minus alpha 0 A d 0. So, r 2 will

become r 1 minus alpha 1 A d 1. So, here if I calculate it r 1 is 0 and half minus alpha 1 is

2 by 3 into matrix A is 2 minus 1 minus 1 2, and then d 1 is d 1 is 1 by 4 and 1 by 2. So,

this becomes if I calculate it 0 and 0. So, now, r 2 is 0. So, our iteration will stop means

method is converged to x 2 which is, solution is x 1 is 2 by 3 and x 2 is 1 by 3 which is

also  the  exact  solution  of  the  system.  So,  this  is  the  implementation  process  of  the

conjugate gradient method.

Now, let us talk about the convergence of the conjugate gradient method.



(Refer Slide Time: 08:21)

So, there is a result in the literature regarding the convergence of this method that is let A

be a symmetric and positive definite matrix of order n. So, it is n by n symmetric as well

as positive definite matrix. Then thus conjugate gradient method for solving the system

AX equals to b converges at most in n iterations. So, CG method will not take more than

n iterations.  It  will  take  less  n  or  less  than  n iterations  like in  the case of  previous

example which we have taken in the beginning of this lecture the system was 2 by 2 and

we have taken just 2 iterations for getting the exact solution.

Moreover the number of iterations for convergence will be proportional to a square root

of conditional  number of A. So, if  conditional  number of A is large then matrix  CG

method will take more number of iterations; if it is small then we will be having a faster

convergence. So, it means to have a better convergence and if you recall from some of

from the previous lecture the conditional number of A here can be given as lambda max

upon lambda min which is just the product of norm of a with norm of A inverse. So, to

have a better convergence we want the conditional number of the coefficient matrix must

be small.

Now, the question arise if A is symmetric and positive definite matrix, but the conditional

number of A is quite large then we will be having slow convergence of CG method. So,

can we have some method to improve this  convergence or to make the convergence



faster? Yes, we are having such a method and that is called preconditioning. So, let us

talk about preconditioning. 
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So, the general idea of preconditioning for iterative methods is to modify the original

system which is ill-conditioned, ill-conditioned means here the conditional number of the

coefficient matrix is quite large. So, if AX equals to b is an ill conditioned system, so to

modify this system in such a way that we obtain an equivalent system let us write it with

the cap notations that is A cap X cap equals to b cap and here meaning of equivalent is

the solution of AX equals to b is also the solution of A cap X cap equals to b cap or in a

reverse way the solution of the new system which is denoted with caps equals to the

solution  of  the  original  system.  And  for  this  new  system  we  should  have  a  faster

convergence. So, for which the iterative method converges faster. 

So, one of the approach for doing this, one of the approach for it to choose a nonsingular

matrix m of the same size as the size of the coefficient matrix A and rewrite the original

system which is ill-conditioned AX equals to b as M inverse AX equals to M inverse into

b. Here m should be chosen in such a way that the conditional number of M inverse A

should be very less when compared to the conditional number of A. So, in that way the

convergence  of  this  new  modify  system  will  be  faster  when  compared  to  the  ill-

conditioned original system. So, this is the basic idea of the preconditioning.



Now, one of the problem here when you are going from the original system AX equals to

b to a new system A cap X cap equals to b cap then for applying the conjugate gradient to

the new system the matrix A cap as should A cap should be symmetric as well as positive

definite. So, how to choose such a m that is the preconditioned matrix or preconditioner

m such that M inverse a should be symmetric as well  as positive definite.  So, let us

address this issue.
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So, here issue is how to find A cap X cap and b cap in order to ensure the SPD property

means symmetric and positive definiteness property of A cap. So, a solution to this issue

is let M inverse equals to product of a matrix L with L transpose, where L is a lower

triangular  matrix.  So,  here  what  we will  be having.  So,  here  L is  a  m by m lower

triangular matrix since we are taking a as n by n. So, better to write it n by n here which

is nonsingular also, means none of the diagonal element of this lower triangular matrix is

0.

Then what we will be having? If we are having original system as AX equals to b then

this system is equivalent to M inverse AX equals to M inverse into b which is equivalent

to L transpose AX equals to L transpose into b which is equivalent to L transpose a L into

L inverse x equals to L T b. Now, take this matrix L transpose a L as your A cap take L

inverse x as your new variable X cap and take L T b as b cap. So, if you choose your



matrix same A cap X cap and b cap in this way then we can ensure the symmetric and

positive definiteness of matrix A cap.
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Now, let us rewrite the conjugate gradient algorithm with preconditioning. So, the same

algorithm which we have taken in the previous lecture we will rewrite it, but together

with a preconditioner M. So, let us write it preconditioned CG algorithm. So, here input

will be the coefficient matrix A right hand side vector b the initial solution X naught and

the modification when compare to the classical conjugate gradient method is here we

will be having a preconditioner M which is a matrix of the same size as your A.

Now, the first step is compute r 0 equals to b minus AX 0 and solve Mr 0 cap equals to r

0. Once you obtain r 0 cap from here set d 0 equals to r 0 cap. If you recall the original

algorithm there we do not have this step. And what we are doing? We are setting d 0 as

my r 0. But here what I am doing? I am calculating a new r 0 cap which is nothing just M

inverse r 0 which is due to preconditioning.

Now, in the second step for K equals to 0 1 2 until convergence do find out alpha K

which is r K transpose into r K cap here now. So, this is another change here. Earlier we

were having r K transpose into r K. Now, what we are having r K transpose into r K cap

upon d K transpose A d K. The fourth step is if we are having update X as X K plus 1

equals to X K plus alpha K d K. Once you are having x K plus 1 calculate r K plus 1

which is r K minus alpha K A d K. Here if r K plus 1 equals to 0 then stop otherwise go



to step 6 again solve Mr K plus 1 cap equals to r K plus 1 and from here obtain and find r

K plus 1 cap with the help of m and r K plus 1. Then compute beta K which is r K plus 1

transpose into r K plus 1 cap upon r K transpose into r K cap.

Once you are having your beta K then compute d K plus 1 equals to r K plus 1 cap plus

beta K d K and in that way the algorithm will run till convergence and this is the end of

for loop which you are having in the second line. So, this is the preconditioned conjugate

gradient algorithm. 

Now, what we will see here what is the extra computation here when compared to the

original conjugate gradient algorithm? If you see it in each iteration what we are having?

We have to solve a system M r K equals to r K extra in each iteration for finding the r K

cap.  So,  to have a  faster  algorithm to have a  faster  computation  we have to choose

preconditioner M in such a way that this system can be solved easily it should be there

otherwise there is no use of using such kind of preconditioner because you are having in

each iteration for solving a system in each iteration you are having an extra system. So,

how to choose this M let us talk about it. 
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So, what should be M? So, the 2 extreme cases are number one, M equals to identity

matrix. So, you can solve easily the system Mr 0 equals to r 0 or r K equals to this one

because if this is an identity then your r K cap will become r K in each iteration and it



means  the  preconditioned  CG converts  into  classical  CG algorithm.  So,  there  is  no

preconditioning here.

The other choice is M equals to A. So, if you take M equals to A that is another extreme

case then X will  become A inverse into b which is as difficult  because it is a direct

method for solving the original system which is also difficult and not feasible choice. So,

what we need to do? We need to choose m somewhere in between these 2 cases. So,

there are few choices of M the first if the original matrix A can be written as the sum of 3

different matrices L, D and U like we have done in the beginning of iterative methods in

Jacobi  and  Gauss  Seidel  method.  So,  where  L is  a  lower  triangular  matrix,  D is  a

diagonal matrix and U is an upper triangular matrix.

Then the first choice of M is if we take M equals to D it is called Jacobi preconditioned.

So, it is called Jacobi preconditioning. The other choice of M is take M equals to L plus

D then it is called Gauss Seidel preconditioning. The third choice of M is something like

1 upon omega into D plus omega L; this kind of choice of M is called successive over

relaxation preconditioning. 

(Refer Slide Time: 30:48)

If you choose M in out of any way out of these 3 then we will have number 1 M will be

symmetric and positive definite not M basically A cap, number 2 M r n equals to r n can

be solved easily, because the earlier methods and the third one which is a guarantee for

the convergence that is the spectral radius of I minus M inverse a must be less than 1 or



norm of I minus M inverse a will be less than 1. I will prefer this one because this is

necessary and sufficient condition. So, these 3 things will effect surely if you make the

choice of m based on those 3 Jacobi, Gauss Seidel or SOR type of approaching.

So, with this I will end this lecture. So, in this lecture we have learnt that how can we

make the convergence of the conjugate gradient method faster than the classical  one

using the preconditioning procedure.

So, with this I will end the iterative methods in this course and in the next lecture we will

see some new properties  of  a  matrix  especially  when all  the  entries  of a  matrix  are

positive.
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These are few references for this lecture.

Thank you very much.


