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Lecture - 35
Non Stationary Iterative Methods: Steepest Descent II

Hello friends. So, welcome to the second lecture on Non Stationary Iterative Methods.

So, in this lecture we will continue the topic, which we have discuss in the previous

lecture means steepest descent methods, we will see few more property of this gradient

method. So, in previous lecture I told you that steepest descent method works like this.
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You are having the residual as b minus AX K and which is the search direction also.

Then what we have taken we have taken alpha K, that is the step length as rk transpose

rk upon rk transpose A r k. Now, the first property we are going to look here which is a

very important property in steepest descent method that is in steepest descent method

consecutive search directions.

So, this is direction dk we denote it by dk in general setting are orthogonal to each other.

Means, what I want to say that dk is orthogonal to dk plus 1 for k equals to 0 1 2 and so

on, in d 0 is orthogonal to d 1 then d 1 is orthogonal to d 2 and so on. So, let us try to

prove it. So, we have dk plus 1 which is basically rk plus 1 residual and this is b minus A

X K plus 1 in gradient descent steepest descent.



This equals to b minus A and X K plus 1 will be X K plus alpha k dk. So, this becomes b

minus A X K minus alpha is any scalar. So, alpha is a scalar. So, alpha k into A d K, b

minus A X K can be written as rk minus alpha k A and dk is also rk. So now, if I check

the inner product of dk plus 1 with dk which is inner product of rk plus 1 with rk this

becomes rk dk minus alpha k rk; sorry A d k with dk, because dk plus 1 I am writing in

this form.

So, d inner product of dk with dk plus 1 will be first term will come rk dk minus alpha k

I am taking out A rk or I have written A dk here with dk. This becomes rk into rk so, I am

writing everything in terms of rk, because dk equals to rk minus if you see the value of

alpha k alpha k is inner product of rk with rk upon rk A rk, into A rk rk.

So, this will be 1. So, it will become 0. So, the inner product of 2 consecutive search

directions are 0, means they are orthogonal to each other.
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Now, let  us  see  another  variant  of  steepest  descent  method  that  is  steepest  descent

method when the given matrix A is not symmetric as well as positive definite; so non-

symmetric steepest descent. So, we have seen that in steepest descent method the matrix

A must  be  symmetric  and  positive  definite.  In  order  to  have  a  unique  minima  of

functional q X equals to half X T A X minus X transpose b, which is also a solution of

the linear system A X equals to b.



Now, just consider that A is not SPD. SPD stands for symmetric and positive definite, but

it  is  non-singular.  Then,  the  matrix  A transpose  A is  symmetric  as  well  as  positive

definite. And, the algorithm can be applied instead of AX equals to b we can apply it to

the  normal  equation  of  AX equals  to  b  and  which  is  A transpose  AX  equals  to  A

transpose b.

So, this I can write AX equals to b, where A cap is a transpose A and b cap is a transpose

b. So, here you can easily see that A cap is symmetric and positive definite. So, I can

apply the steepest descent method. So, this is the strategy for applying steepest descent

method for a general system, where A is not symmetric and positive definite let us take

an example of it.
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Solve  the  linear  system  AX  equals  to  b  using  steepest  descent  method  with  initial

solution as 0 0 0 transpose and A is given as 3 1 0 0 3 2 1 1 0 and b is 4 1 0. So, if you

see that the matrix A is neither symmetric nor positive definite. Hence, we cannot apply

the  gradient  descent  steepest  descent  algorithm  directly  on  this  system.  Means,  we

cannot minimize the functional half of X T A X minus X transpose b using the steepest

descent method. So, what we will do here we will apply the method on A transpose AX

equals to A transpose b. So, let us first calculate A transpose A. So, A transpose A will

become 3 1 0 0 3 2 1 1 0 transpose into 3 1 0 0 3 2 1 1 0 and this comes out to be 10 4 0

4 11 6 and 0 6 4.



The same time we calculate A transpose into b and it becomes 12 7 and 2. So, now,

instead of the original system AX equals to b, we are going to solve A transpose AX

equals to A transpose b. So, for applying the steepest descent method here this matrix

would be positive definite, because it will be symmetric it is product of A matrix with it

is transpose. So, it will be symmetric always.

So, positive definite if we check here so, 10 is greater than 0 if I take this 10 4 4 11. So,

this is 94, which is greater than 0 and determinant of A transpose A comes out to be 16

which is again positive. So, hence A transpose A is A symmetric and positive definite

matrix and we can apply the steepest descent method here.

So,  let  us  apply  here  the  method.  So,  my  r  0  will  become  A transpose  b  minus  A

transpose A X 0, which comes out to be 12 7 2 transpose. Now, I calculate my alpha 0

which is r 0 transpose into r 0 upon r 0 transpose A r 0. So, it will come out to be A scalar

and in the similar way as we have done in the previous lecture we can apply the steepest

descent method.
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And, the solution of this system will be the solution of the original system in particular

this procedure; where the steepest descents we are applying on the normal equations of

the original system. So, this procedure is called the residual norm steepest descent. Here,

the functional being minimized is so, it will be instead of q X I am writing psi X, because



it is A different function and it is half inner product of AX with ax minus X A transpose

b.

If, you check the earlier one in case of extended steepest descent it was q X, which was

half X with AX minus X b. So, here you can notice that we are having this A transpose b

instead  of  b  it  is  because,  now my b is  in  the normal  equation  A transpose b.  And,

similarly instead of this X I am having ax here because it is I am applying of A transpose

A instead of A.

And, this method minimizes the Euclidean norm of the residual that is AX minus b. And,

if you can recall the least square approximation method in that method we have written

the solution like X equals to A transpose A inverse into A transpose b. So, here this

solution, which we are obtaining with residual norm steepest descent method is similar

what we are obtaining using least square approximation.

Now, let us see another important property of the steepest descent method.
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So, this I will write as instant convergence of steepest descent method. So, let us write

this result. So, if the initial error; that means, r 0 which is b minus AX 0 is an eigenvector

of the coefficient matrix A in the steepest descent method, then the method converges in

just one iteration only.



So, what I want to say if your initial solution you choose in such a way, that the initial

residual  or  initial  error  becomes  an  eigenvector  of  the  coefficient  matrix.  Then  the

steepest descent method will converge in just one iteration to the exact solution let us see

the proof of this. So, let lambda V be an Eigenpair of A. So, lambda is an eigenvalue and

corresponding eigenvector is V it means A into V equals to lambda into V let us say this

is equation 1.

 Now, assume initial solution as X 0, which is the error. So, this is X star minus V, where

X star is the exact solution of AX equals to b. So, what I am assuming here I am taking

the initial solution as the error, if I choose my initial solution in this way then what you

can see from here that the error in the initial solution will be. So, initial error e 0 will be

or r 0 here X star minus X 0, this is X star minus X 0 is X star minus V. So, this will

become V.

So, I am taking initial error as the eigenvector of the matrix A. So, now, calculate r 0. So,

calculate r 0 r 0 will become b minus AX 0. So, b minus A X 0 we have chosen X star

minus V. So, b minus AX star plus AV AX star equals to b. So, b will be cancel out it will

remain as AV and AV is nothing just lambda times V.

So, the initial residual is a multiple of scalar multiple of V, which is again an eigenvector

same eigenvector here if we calculate alpha 0. So, alpha 0 is inner product of r 0 with r 0

upon inner product of r 0 with ar 0. So, this comes out to be lambda V into lambda V

upon lambda V into A lambda V. So, lambda you can take out lambda AV and this comes

out to be one upon lambda because AV again become the lambda V.

So, in the numerator you will be having lambda square in the denominator you will be

having lambda q. So, it comes out to be 1 upon lambda. So, the step length is 1 upon

lambda and initial residual is lambda times that eigenvector, now calculate X 1.
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So, X 1 will become X 0 plus alpha 0 r 0, and what is my claim my claim is that the

steepest descent method will converge in just 1 iteration. So, this X 1 should be equals to

the exact solution which is X star in our case.

So, it will X 0 plus alpha 0 is 1 upon lambda r 0 is lambda into V. So, this comes out to

be X 0 plus V and X 0 plus V is nothing just X star, because X 0 is X star minus V and

which is exact solution of AX equals to b. So, in this way we have seen that if the initial

error you choose the initial solution in such a way that the initial solution error is an

eigenvector of the matrix A, then the steepest descent method will converge in just 1

iteration.

So, if somehow you are having an idea of the eigenvector of A you can choose your

initial solution in such A way that the error in the zeroth iteration will be that eigenvector

then your method will converge in just 1 iteration this is the idea.  So, let us take an

example based on this. So, consider A equals to 3 minus 1 1 minus 1 3 minus 1 and 1

minus 1 3. So, this is the same example which we have taken in the earlier lecture.

And, here b the same b I am taking minus 1 7 minus 7. So, solve AX equals to b using

steepest descent. So, here if you see one of the eigenpair of A is 2 1 1 0. So, this is

eigenvalue and this is corresponding eigenvector. So, is an eigenpair of A. If, we choose

X 0 as X minus V, where X is the exact solution of this so, 1 2 minus 2 minus 1 1 0 so, it

comes out to be 0 1 minus 2.



Then, my r 0 will become b minus AX 0 and b minus AX 0 means. So, b minus AX 0

this comes out to be 2 2 0. Here, if I calculate alpha 0 it will be 1 upon lambda so, 1 upon

2. So, what is X 1 X 1 is X 0 plus alpha 0 r 0 X 0 is 0 1 minus 2 plus 1 by 2 into 2 2 0,

which is 1 2 minus 2 that is the same as the initials as the exact solution X star.

So, by this example we have verified the result, which is given in the theorem that you

the steepest descent method will converge in just one iteration.

(Refer Slide Time: 27:38)

So,  these  are  the  references,  for  this  lecture  and in  this  lecture  we have  seen  some

properties of steepest descent. And then we have seen the residual norm steepest descent

method for general system AX equals to b, where the matrix A is not A SPD matrix

means symmetric and positive definite matrix.

In the next lecture we will learn another gradient method that is called conjugate gradient

method,  which  is  having  faster  convergence  when  compare  to  the  steepest  descent

method.

Thank you very much.


