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Hello friends, so welcome to the second lecture on the Iterative Methods for solving

linear systems, so in the previous lecture we have learnt two schemes.
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One is Jacobi and another one is Gauss Seidel, for solving the linear systems, it has been

seen that Gauss Seidel method converges towards the exact solution in less iterations

when compare to the Jacobi scheme. there are many problems where these two schemes

do not converge at all in this lecture we will learn a more generalized scheme that is

called successive over relaxation finally, in the last page of this lecture we will discuss

the  conditions  under  which  these  iterative  schemes  means  Jacobi  Gauss  Seidel  and

successive over relaxation converges.

So, as I told you in the previous lecture these schemes are called non stationary iterative

methods means these are of the form s k plus 1 equals to a iteration matrix p times s k

plus q, so these are the stationary method.
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So, now consider A x equals to b write a as the sum of 3 matrix is L D and U times x into

b. Now, what you do you write D plus omega, omega is where semi scalar times L plus 1

minus omega L plus U into x equals to b. So, if you observe this is just omega L plus L

minus omega l. So, this is just this L only now what you do you write D over iterations

like this D plus omega L x at k plus 1 iteration equals to minus 1 minus omega L plus U

x at kth iteration plus b.

Now, if in this equation if I take omega equals to 0 then what will happen. So, it will

become D x k plus 1 minus 1 L l plus U s k plus b. So, this becomes jacobis scheme, if I

take omega equals to 1 then it becomes Gauss Seidel scheme for omega equals to 0.5,

this is somewhere between Gauss Seidel and Jacobi for omega greater than 1 we have a

method beyond Gauss Seidel. So, in this way we can say we are having some sense of

over relaxation in this case and for certain problem it turns out to be highly effective

method.
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Now, consider an iterative scheme for a n by n linear system a x equals to b as D plus

omega L at x k plus 1 iteration equals to minus 1 minus omega L plus U x at kth iteration

plus b.

Now, it is possible that is the same thing which I have discussed in the last slide. So, it is

possible to recast the above scheme in such a way that the matrices on the left and right

hand sides are lower and upper triangular respectively. So, it is lower and it is upper this

allows us  to  use the  concept  of  successive displacement,  and over relaxation  can be

implemented in a manner similar to the Gauss Seidel method with new variables values

overwriting old ones as soon as they become available.
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This type of iterative method is known as successive over relaxation or in short SOR. So,

the iterative process of SOR method is the same as the other stationary methods that x k

plus 1 equals to the iteration matrix p times x at kth iteration plus the column vector q

where omega is between 0 to 2, where omega is called a relaxation parameter for omega

greater than 1 we say it over relaxation for omega less than 1 we say it under relaxation.
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One more thing that how to compute the optimal value because omega will be between 0

to  2.  So,  what  will  be  the  optimal  value  for  a  given  problem,  so  that  the  schemes

converge faster?

So, that optimal value of the omega for the SOR scheme can be given by this 1. So,

omega optimal will be 2 upon mu square multiplied with 1 minus square root of 1 minus

mu square, where mu is the spectral radius of the Jacobi iteration matrix and if you can

recall Jacobi iteration matrix is minus D inverse into L plus U. So, you calculate all the

eigenvalues of this and the eigenvalue bigger in the magnitude will be the value of mu.

That is the spectral radius of this iteration matrix p and once you are having mu you can

calculate the optimal value of omega using this particular formula.
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Once you are having omega then you can put the value of omega here and then you can

calculate  the iteration  matrix  p as well  as  column vector  q,  and you can write  your

iteration  equation  iterative  equations  of  SOR  method.  So,  for  this  let  us  take  this

particular example.
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So, consider the linear system 2 minus 1 0 minus 1 2 minus 1 0 minus 1 2. So, this is the

coefficient matrix a multiplied with column vector of a non-variable x 1 x 2 x 3 equals to

right hand side vector b as 7 1 1, develop the iterative scheme using the successive over

relaxation method also perform 3 iterations of this method by taking an initial solution as

0 0 0, so x 1 is 0 x 2 is 0 and x 3 is 0.
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So, if we see now the coefficient matrix a can be written in terms of a lower diagonal

matrix lower triangular matrix L a diagonal matrix D and an upper triangular matrix U.

So, for this matrix a L will be this D will be like this and U will become this matrix.
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Now, as we know the iteration matrix for successive over relaxation is given by this

particular scheme. So, if I calculate here the iteration matrix in terms of omega comes

out to be in this form. So, first element is 1 minus omega second is omega by 2 third 1 is

0, then in the second row first element is omega into 1 minus omega by 2 second element

is 1 minus omega plus omega square upon 4 and the third element in the second row is a

omega by 2.

Then in third row first element is omega square into 1 minus omega upon 4 omega 1

minus omega upon 2 plus omega cube upon 8 and the third element is 1 minus omega

plus  omega  square  upon  4.  So,  this  is  the  matrix  which  is  the  iteration  matrix  for

successive over relaxation method and the right at the column vector q comes out in this

form. So, now, what we need to do we need to calculate the optimal value of the omega

and we have to substitute that value here to get the iteration matrix p in the form, so that

we can perform the iterations. So, as I told you the optimal value of the omega will be a

function of mu where mu is the spectral radius of the Jacobi iteration matrix.
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So, if I calculate the Jacobi iteration matrix for this problem it comes out to be minus D

inverse into L plus U and in this way, the eigenvalue of this matrix are 0 plus 1 upon root

2 and minus 1 upon root 2. So, it gives the spectral radius mu as 1 upon root 2 and hence

the optimal factor for SOR scheme is omega optimal is 2 upon mu square 1 minus square

root 1 minus mu square by using this formula and it comes out to be 1.171573. After

substituting this value of omega into this iteration matrix and the column vector q.
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We obtained this matrix p as the iteration matrix and this column vector as the q now

take x 1 x 2 x 3 as 0 in the initial solution. So, in the first iteration we obtained x 1 as

4.1006 x 2 as 2.9879 and x 3 as 2.3361.

These are the values of x 1 x 2 x 3 in the second iteration and in the third iteration we

obtained x 1 as 5.8283 x 2 as 4.8731 and x 3 as 2.9606. So, these are the 3 iterations of

SOR method.

So, this  is  how we can implement  the successive over relaxation  scheme,  first  write

down the iteration matrix in terms of omega from the formula of iteration matrix as well

as the column vector q, find out the optimal value of omega substitute there and from

there you will get the iterative equations for the successive over relaxation method.
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After  this  implementation  we  will  talk  about  the  convergence  analysis  for  all  these

iterative methods.
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So, we are talking about convergence analysis  of the stationary iterative schemes for

solving linear systems. So, consider a linear system a x equals to b where a is a n by n

matrix and let the exact solution of this system becomes x equals to s.

So, if we apply stationary iterative scheme on it, then we are having the scheme of the

form x at k plus 1 iteration is p at x at kth iteration plus q where p is the iteration matrix

and q is column vector now since s is the exact solution. So, what we are having s equals

to p times s plus q.

Because s is the exact solution and once you obtain the exact solution then whatever

iteration you perform you will get the same solution that we have seen in case of the

example of Jacobi as well as Gauss Seidel in the previous lecture where in case of Jacobi

in forty fifth and forty sixth iterations you are getting the same solution and in case of

Gauss Seidel you are getting the same solution in ninth and tenth iteration.

So, now let us say equation 1 and this is my equation 2, now if we subtract equation 2

from equation 1. We have x k plus 1 minus s equals to p x k minus s ok, define e i equals

to x i minus s as the error in the ith iteration. Then what we are having we can write this

equation as e that is error in k plus 1 iteration equals to p times error in kth iteration.

Or this  I  can write  norm of error  because a  this  error will  be a  vector  for  different

variables x 1 x 2 x 3 up to x n this can be written as norm of the error vector in kth



iteration. So, what we are having we are having the error vector in k plus 1 iteration

equals to the norm of error vector p times error vector in kth iteration and this can be

written as norm of p into norm of e k.
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So, what we are having e k plus 1 less than equals to p, that is norm of p into norm of

error vector in kth iteration. Now if this norm of p becomes less than 1 then what we are

having the error in k plus 1 iteration is less than error in kth iteration. Now this is quite

important this tells us that whatever error you are having in first iteration in the second

iteration  you will  be  having the  less  error  whatever  error  you are  having in  second

iteration in the third iteration you will be having the less error means you are going

towards the exact solution and this is happening due to this condition.

So, based on this what we can say they we can write the sufficient condition for the

convergence of an iterative scheme, and that sufficient condition becomes that even if

our initial approximation has a large error the first iteration is certain to reduce that error

the second is certain to reduce it further because in each iteration you are having less and

less error and so on.

It follows that the error in kth iteration will be 0 when k is standing to infinity which

implies  that  the  sequence  of  approximation  will  move  towards  a  will  tend  to  exact

solution as k tending to infinity, because this error is tending to 0 hence a sufficient

condition for the convergence of iterative equation can be stated as if the norm of matrix



p is less than 1 then the iterative scheme x k plus 1 equals to p x k plus q is convergent

for  any initial  solution,  because  whatever  large  error  you are  having initially  it  will

reduce in each subsequent iteration.
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Here one important remark I would like to mention because there are different types of

matrix norms. So, if we choose a particular matrix norm say the infinity norm and if we

find that the this infinity norm for the iteration matrix p is greater than 1 this does not

indicate that the iterative scheme will fail to converge, because it is a sufficient condition

not necessary first of all.

And moreover there may be some other matrix norm such as 1 norm Frobenius norm that

is strictly less than 1 in which case convergence is still guaranteed. So, there should be 1

norm is less than 1 that will do our job then guaranteed we can say that we can say that

the  iterative  scheme will  be  convergent  for  any initial  solution.  So,  in  any case  the

condition the norm of iteration matrix p is less than 1 is only a sufficient condition for a

convergence not a necessary 1, now we will write the necessary and sufficient condition.
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The iterative scheme x k plus 1 equals to P of x k plus q for solving a linear system a x

equals to b is convergent  for any initial  for any initial  solution,  if  and only if  every

eigenvalue of P satisfy lambda is less than 1 means every eigenvalue of P is less than 1.

Or in  other  way we can say it  the spectral  radius  of p is  less than 1,  so this  is  the

necessary  as  well  as  sufficient  condition  for  the  convergence  means  if  scheme  is

convergent then the every eigenvalue of p will be less than 1 and if every eigenvalue of p

is less than 1 then the scheme will be certainly convergent.

These conditions  I  have spoken they are on the iteration matrix  b can we say some

condition on the coefficient matrix a because the coefficient matrix a is directly available

to us from the problem p we need to calculate. So, here I am telling one more condition

which is which can be implemented on the coefficient matrix a and that sometimes a

guarantee  of  convergence  can  be  established  by  direct  inspection  of  the  coefficient

matrix a.
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That is as I told you without needing to compute the iteration matrix p in particular if a

has the diagonally dominant property. Then the Jacobi and Gauss Seidel methods are

both certain to converge, and a matrix is set to be diagonally dominated if in each row.

aThe absolute value of the entry on the diagonal is greater than the sum of the absolute

values of the other entries.
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So, consider this particular example, in this example comments about the convergence of

Jacobi iterative method for the following matrix. So, here this is my coefficient matrix.



So, if you see the coefficient matrix here the diagonal entry in first row is 5 and some of

the absolute value of the other entries are 3. So, 5 is greater than 3 here 8 is greater than

2 plus 1 and here 4 is greater than 2 plus 0.

So, it is a diagonally dominant matrix strictly diagonally dominant and hence the scheme

will  converge,  moreover if you want to check with the iteration matrix  if I calculate

iteration matrix in case of Jacobi method. It comes out to be in this way and if I find out

the norm of this the infinity norm is 0.10 and 1 norm is 0.75, both are less than 1 and

hence these are the sufficient are these guaranteed the scheme we converge.
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Jacobi  scheme will  convergence  comments  about  the convergence of Jacobi  iterative

method for the following matrix, now this is a an interesting example why I am saying

interesting let me describe it.
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So, here I am having a system a x equals to b where the matrix A is minus 2 0 4 2 minus

8 1 and 5 minus 1 3. If you see this matrix in first row the diagonal entry which is 2 it is

less than 0 plus 4. So, this matrix is not diagonally dominant in this form; however, if I

write the equations the first equation becomes minus 2 x 1 plus 4 x 3 equals to b 1 the

second equation is 2 x 1 minus 8 x 2 plus x 3 equals to b 2 and 5 x 1 minus x 3 plus 3 x 3

equals to b 3.

Now what you do you just interchange first and third equations. So, if I interchange it my

system will become 5 x 1 minus x 3 plus 3 x 3 equals to b 3, the second equation will be

remain like the earlier and this 1 4 x 2 4 x 3 equals to b 1. Now these 2 systems are same

they will be having the same solution just I have interchange the order of equations.

Now, if you see the coefficient matrix of this system it will become 5 minus 1 3 2 minus

8 1 minus 2 0 4. So, what will happen if I take this coefficient matrix it is diagonally

dominant, because in each row diagonal vector diagonal element is having the bigger

value when compare to the sum of the absolute value of other 1.

In terms of absolute  value and what  you do apply the Jacobi scheme on this  matrix

instead of this one, because you will get the same solution only and your scheme will be

warrantedly converge.
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Take one more example let A becomes 4 2 minus 2 0 4 2 and 1 0 4 here matrix is not

strictly diagonally dominant, because if you see the first row 4 equals to 2 plus minus 2,

so which are same.

So, what we are having here we cannot comment even though we change the order of the

equations it will not it will become more worst. So, we cannot comment anything after

seeing the coefficient matrix. So, if we talk about Jacobi method and let me calculate the

iteration matrix for Jacobi method. So, it will become minus D inverse into L plus U and

it comes out to be 0 minus 0.5 0.5 0 0 minus 0.5 minus 0.25 0 0.

If I calculate this norm it comes out to be 1, and if I calculate this norm this is also 1. So,

what will happen not diagonally dominant this norm is 1 this norm is 1. So, what is the

other choice left with us calculate this also, because best on this I cannot say whatever

information I have calculated I cannot say anything about the convergence. So, calculate

frobenius norm and fortunately it comes out to be 0.901, which is less than 1 and hence

since one of the norm is less than 1, then convergence is guaranteed it satisfy the criteria

of sufficient condition.

In this lecture we have learned about the successive over relaxation scheme then we have

seen the convergence conditions for different stationary schemes. In the next lecture we

will talk about non-stationary iterative scheme so.



Thank you very much.


